Automated ecological assessment of physical activity: advancing direct observation
Journal article
Carlson, Jordan A., Liu, Bo, Sallis, Jim, Kerr, Jacqueline, Hipp, J. A., Staggs, Vincent S., Papa, Amy, Dean, Kelsey and Vasconcelos, Nuno M.. (2017). Automated ecological assessment of physical activity: advancing direct observation. International Journal of Environmental Research and Public Health. 14(12), pp. 1 - 15. https://doi.org/10.3390/ijerph14121487
Authors | Carlson, Jordan A., Liu, Bo, Sallis, Jim, Kerr, Jacqueline, Hipp, J. A., Staggs, Vincent S., Papa, Amy, Dean, Kelsey and Vasconcelos, Nuno M. |
---|---|
Abstract | Technological advances provide opportunities for automating direct observations of physical activity, which allow for continuous monitoring and feedback. This pilot study evaluated the initial validity of computer vision algorithms for ecological assessment of physical activity. The sample comprised 6630 seconds per camera (three cameras in total) of video capturing up to nine participants engaged in sitting, standing, walking, and jogging in an open outdoor space while wearing accelerometers. Computer vision algorithms were developed to assess the number and proportion of people in sedentary, light, moderate, and vigorous activity, and group-based metabolic equivalents of tasks (MET)-minutes. Means and standard deviations (SD) of bias/difference values, and intraclass correlation coefficients (ICC) assessed the criterion validity compared to accelerometry separately for each camera. The number and proportion of participants sedentary and in moderate-to-vigorous physical activity (MVPA) had small biases (within 20% of the criterion mean) and the ICCs were excellent (0.82–0.98). Total MET-minutes were slightly underestimated by 9.3–17.1% and the ICCs were good (0.68–0.79). The standard deviations of the bias estimates were moderate-to-large relative to the means. The computer vision algorithms appeared to have acceptable sample-level validity (i.e., across a sample of time intervals) and are promising for automated ecological assessment of activity in open outdoor settings, but further development and testing is needed before such tools can be used in a diverse range of settings |
Year | 2017 |
Journal | International Journal of Environmental Research and Public Health |
Journal citation | 14 (12), pp. 1 - 15 |
Publisher | MDPI AG |
ISSN | 1660-4601 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/ijerph14121487 |
Scopus EID | 2-s2.0-85036632590 |
Open access | Open access |
Page range | 1 - 15 |
Research Group | Mary MacKillop Institute for Health Research |
Publisher's version | |
Editors | P. B. Tchounwou |
https://acuresearchbank.acu.edu.au/item/87vz0/automated-ecological-assessment-of-physical-activity-advancing-direct-observation
Download files
76
total views212
total downloads0
views this month0
downloads this month