Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment

Journal article


Phadnis, Smruti M., Ghaskadbi, Surendra M., Hardikar, Anandwardhan A. and Bhonde, Ramesh R.. (2009) Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. The Review of Diabetic Studies. 6(4), pp. 260 - 270. https://doi.org/10.1900/RDS.2009.6.260
AuthorsPhadnis, Smruti M., Ghaskadbi, Surendra M., Hardikar, Anandwardhan A. and Bhonde, Ramesh R.
Abstract

Cellular microenvironment is known to play a critical role in the maintenance of human bone marrow-derived mesenchymal stem cells (BM-MSCs). It was uncertain whether BM-MSCs obtained from a 'diabetic milieu' (dBM-MSCs) offer the same regenerative potential as those obtained from healthy (non-diabetic) individuals (hBM-MSCs). To investigate the effect of diabetic microenvironment on human BM-MSCs, we isolated and characterized these cells from diabetic patients (dBM-MSCs). We found that dBM-MSCs expressed mesenchymal markers such as vimentin, smooth muscle actin, nestin, fibronectin, CD29, CD44, CD73, CD90, and CD105. These cells also exhibited multilineage differentiation potential, as evident from the generation of adipocytes, osteocytes, and chondrocytes when exposed to lineage specific differentiation media. Although the cells were similar to hBM-MSCs, 6% (3/54) of dBM-MSCs expressed proinsulin/C-peptide. Emanating from the diabetic microenvironmental milieu, we analyzed whether in vitro reprogramming could afford the maturation of the islet-like clusters (ICAs) derived from dBM-MSCs. Upon mimicking the diabetic hyperglycemic niche and the supplementation of fetal pancreatic extract, to differentiate dBM-MSCs into pancreatic lineage in vitro, we observed rapid differentiation and maturation of dBM-MSCs into islet-like cell aggregates. Thus, our study demonstrated that diabetic hyperglycemic microenvironmental milieu plays a major role in inducing the differentiation of human BM-MSCs in vivo and in vitro.

Keywordsdiabetes; beta-cell; stem cell; differentiation; bone marrow; NGN3; NKX6.1; PAX6
Year2009
JournalThe Review of Diabetic Studies
Journal citation6 (4), pp. 260 - 270
PublisherSociety for Biomedical Diabetes Research
ISSN1613-6071
Digital Object Identifier (DOI)https://doi.org/10.1900/RDS.2009.6.260
Page range260 - 270
Research GroupSchool of Nursing, Midwifery and Paramedicine
Place of publicationGermany
Permalink -

https://acuresearchbank.acu.edu.au/item/8q551/mesenchymal-stem-cells-derived-from-bone-marrow-of-diabetic-patients-portrait-unique-markers-influenced-by-the-diabetic-microenvironment

  • 1
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Cellular detection of multiple antigens at single cell resolution using antibodies generated from the same species
Ranjan, Amaresh, Joglekar, Mugdha, Atre, Ashwini, Patole, Milind, Bhonde, Ramesh and Hardikar, Anandwardhan. (2012) Cellular detection of multiple antigens at single cell resolution using antibodies generated from the same species. Journal of Immunological Methods. 379(1-2), pp. 42 - 47. https://doi.org/10.1016/j.jim.2012.02.018
Simultaneous imaging of microRNA or mRNA territories with protein territory in mammalian cells at single cell resolution
Ranjan, Amaresh, Joglekar, Mugdha, Atre, Ashwini, Patole, Milind, Bhonde, Ramesh and Hardikar, Anandwardhan. (2012) Simultaneous imaging of microRNA or mRNA territories with protein territory in mammalian cells at single cell resolution. Rna Biology. 9(7), pp. 949 - 953. https://doi.org/10.4161/rna.20484
Stem cells: Epigenetic basis of differentiation
Williams, Michael D., Mitchell, Geraldine and Hardikar, Anandwardhan. (2011) Stem cells: Epigenetic basis of differentiation. The Open Stem Cell Journal. 3(1), pp. 28 - 33. https://doi.org/10.2174/1876893801103010028
Location, location, location :Beneficial effects of autologous fat transplantation
Satoor, Sarang, Puranik, Amrutesh, Kumar, Sandeep, Williams, Michael, Ghale, Mallikarjun, Rahalkar, Anand, Karandikar, Mahesh, Shouche, Yogesh, Patole, Milind, Bhonde, Ramesh, Yajnik, Chittaranjan and Hardikar, Anandwardhan. (2011) Location, location, location :Beneficial effects of autologous fat transplantation. Scientific Reports. 1(Article 81), pp. 1 - 10. https://doi.org/10.1038/srep00081
A prevascularized tissue engineering chamber supports growth and function of islets and progenitor cells in diabetic mice
Forster, Natasha, Penington, Anthony, Hardikar, Anandwardhan, Palmer, Jason, Hussey, Allan, Tai, John, Morrison, Wayne and Feeney, Sandra. (2011) A prevascularized tissue engineering chamber supports growth and function of islets and progenitor cells in diabetic mice. Islets. 3(5), pp. 271 - 283. https://doi.org/10.4161/isl.3.5.15942
Reduced expression of PDX-1 is associated with decreased beta cell function in chronic pancreatitis
Mitnala, Sasikala, Pondugala, Pavan Kumar, Rao, GuduruVenkat, Rabella, Pradeep, Thiyyari, Jayashree, Chivukula, Subramanyam, Boddupalli, Sadasivudu, Hardikar, Anandwardhan and Reddy, Duvvuru Nageshwar. (2010) Reduced expression of PDX-1 is associated with decreased beta cell function in chronic pancreatitis. Pancreas. 39(6), pp. 856 - 862. https://doi.org/10.1097/MPA.0b013e3181d6bc69
Quantitative estimation of multiple miRNAs and mRNAs from a single cell
Joglekar, Mugdha, Wei, Chiju and Hardikar, Anandwardhan. (2010) Quantitative estimation of multiple miRNAs and mRNAs from a single cell. Cold Spring Harbor Protocols. 5(8), pp. 937 - 947. https://doi.org/10.1101/pdb.prot5478
C-Kit and stem cell factor regulate PANC-1 cell differentiation into insulin-and glucagon-producing cells
Wu, Yuexiu, Li, Jinming, Saleem, Saira, Hardikar, Anandwardhan and Wang, Rennian. (2010) C-Kit and stem cell factor regulate PANC-1 cell differentiation into insulin-and glucagon-producing cells. Laboratory Investigation. 90(9), pp. 1373 - 1384. https://doi.org/10.1038/labinvest.2010.106
Cdk4 regulates recruitment of quiescent ß-cells and ductal epithelial progenitors to reconstitute ß-cell mass
Lee, Ji-Hyeon, Jo, Junghyo, Hardikar, Anandwardhan, Periwal, Vipul and Rane, Sushil G.. (2010) Cdk4 regulates recruitment of quiescent ß-cells and ductal epithelial progenitors to reconstitute ß-cell mass. PLoS ONE. 5(1), pp. 1 - 1. https://doi.org/10.1371/journal.pone.0008653
Differentiation of human umbilical cord blood-derived mononuclear cells to endocrine pancreatic lineage
Parekh, Vishal S., Joglekar, Mugdha V. and Hardikar, Anandwardhan. (2009) Differentiation of human umbilical cord blood-derived mononuclear cells to endocrine pancreatic lineage. Differentiation. 78(4), pp. 232 - 240. https://doi.org/10.1016/j.diff.2009.07.004
Islet-like cell clusters occur naturally in human gall bladder and are retained in diabetic conditions
Sahu, Subhshri, Joglekar, Mugdha V., Dumbre, Ramesh, Phadnis, Smruti M., Tosh, David and Hardikar, Anandwardhan. (2009) Islet-like cell clusters occur naturally in human gall bladder and are retained in diabetic conditions. Journal of Cellular and Molecular Medicine. 13(5), pp. 999 - 1000. https://doi.org/10.1111/j.1582-4934.2008.00572.x
Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro
Dalvi, Maithili P., Umrani, Malati R., Joglekar, Mugdha V. and Hardikar, Anandwardhan. (2009) Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro. Journal of Biosciences. 34(4), pp. 523 - 528. https://doi.org/10.1007/s12038-009-0071-x
The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells
Joglekar, Mugdha V., Patil, Deepak, Joglekar, Vinay M., Rao, Guduru Venkat, Reddy, Nageshwar Duvvuru, Mitnala, Sasikala, Shouche, Yogesh and Hardikar, Anandwardhan. (2009) The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets. 1(2), pp. 137 - 147. https://doi.org/10.4161/isl.1.2.9578
New sources of b-cells for treating diabetes
Sahu, Subhshri, Tosh, David and Hardikar, Anandwardhan. (2009) New sources of b-cells for treating diabetes. Journal of Endocrinology. 202(1), pp. 13 - 16. https://doi.org/10.1677/JOE-09-0097
Human blood vessel-derived endothelial progenitors for endothelialization of small diameter vascular prosthesis
Ranjan, Amaresh K., Kumar, Umesh, Hardikar, Ashutosh A., Poddar, Pankaj, Nair, Prabha D. and Hardikar, Anandwardhan. (2009) Human blood vessel-derived endothelial progenitors for endothelialization of small diameter vascular prosthesis. PLoS ONE. 4(11), pp. 1 - 1. https://doi.org/10.1371/journal.pone.0007718
Expression of islet-specific microRNAs during human pancreatic development
Joglekar, Mugdha V., Joglekar, Vinay M. and Hardikar, Anandwardhan. (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expression Patterns. 9(2), pp. 109 - 113. https://doi.org/10.1016/j.gep.2008.10.001
Human fetal pancreatic insulin-producing cells proliferate in vitro
Joglekar, Mugdha V., Joglekar, Vinay M., Joglekar, Sheela V. and Hardikar, Anandwardhan. (2009) Human fetal pancreatic insulin-producing cells proliferate in vitro. Journal of Endocrinology. 201(1), pp. 27 - 36. https://doi.org/10.1677/JOE-08-0497