Temporal betweenness centrality in dynamic graphs

Journal article


Tsalouchidou, Ioanna, Baeza-Yates, Ricardo, Bonchi, Francesco, Liao, Kewen and Sellis, Timos. (2020) Temporal betweenness centrality in dynamic graphs. International Journal of Data Science and Analytics. 9(3), pp. 257 - 272. https://doi.org/10.1007/s41060-019-00189-x
AuthorsTsalouchidou, Ioanna, Baeza-Yates, Ricardo, Bonchi, Francesco, Liao, Kewen and Sellis, Timos
Abstract

Measures of centrality of vertices in a network are usually defined solely on the basis of the network structure. In highly dynamic networks, where vertices appear and disappear and their connectivity constantly changes, we need to redefine our measures of centrality to properly capture the temporal dimension of the network structure evolution, as well as the dynamic processes over the network. Betweenness centrality (BC), one of the most studied measures, defines the importance of a vertex as a mediator between available communication paths. BC value of a node is expressed as the fraction of the shortest paths passing through this node. In other words, given the context that information flow follows the shortest paths, a node with higher BC potentially has greater influence on the information flow in the network. In temporal dynamic graphs, a communication path should be seen as a path both in space (i.e., the network structure) and in time (i.e., the network evolution). Toward this goal, in this paper we propose the bi-objective notion of shortest–fastest path (SFP) in temporal graphs, which considers both space and time as a linear combination governed by a parameter. Based on this notion, we then define a novel temporal betweenness centrality (TBC) metric, which is highly sensitive to the observation interval and the importance of space and time distances of the vertices, that can provide better understanding of the communication mediators in temporal networks. We devise efficient algorithms for exactly computing all-pairs SFPs and the corresponding BC values both in a single graph window and sliding graph windows. We also present a distributed implementation of our approach on Apache Spark which shows great solution effectiveness and efficiency. We provide a thorough experimentation on a large variety of datasets. An application to the analysis of information propagation proves that our notion of TBC outperforms static BC in the task of identifying the best vertices for propagating information.

Keywordstemporal networks; dynamic graphs; betweenness centrality
Year2020
JournalInternational Journal of Data Science and Analytics
Journal citation9 (3), pp. 257 - 272
PublisherSpringer International Publishing
ISSN2364-4168
Digital Object Identifier (DOI)https://doi.org/10.1007/s41060-019-00189-x
Page range257 - 272
Research GroupPeter Faber Business School
Publisher's version
File Access Level
Controlled
Place of publicationGermany
Permalink -

https://acuresearchbank.acu.edu.au/item/8qq0z/temporal-betweenness-centrality-in-dynamic-graphs

Restricted files

Publisher's version

  • 12
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Contextual community search over large social networks
Chen, Lu, Liu, Chengfei, Liao, Kewen, Li, Jianxin and Zhou, Rui. (2019) Contextual community search over large social networks. 35th International Conference on Data Engineering (ICDE). Macao, China: IEEE Computer Society. pp. 88 - 99 https://doi.org/10.1109/ICDE.2019.00017
A fast algorithm for optimally finding partially disjoint shortest paths
Guo, Longkun, Deng, Yunyun, Liao, Kewen, He, Qiang, Sellis, Timos and Hu, Zheshan. (2018) A fast algorithm for optimally finding partially disjoint shortest paths. Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), Stockholm, Sweden, July 13-19, 2018. Stockholm, Sweden: International Joint Conferences on Artificial Intelligence. pp. 1456 - 1462 https://doi.org/10.24963/ijcai.2018/202
A cost model for long-term compressed data retention
Liao, Kewen, Moffat, Alistair, Petri, Matthias and Wirth, Anthony. (2017) A cost model for long-term compressed data retention. 10th International Conference on Web Search and Data Mining. United States of America: Association for Computing Machinery. pp. 241 - 249 https://doi.org/10.1145/3018661.3018738
Edge labeling schemes for graph data
Goonetilleke, Oshini, Koutra, Danai, Sellis, Timos and Liao, Kewen. (2017) Edge labeling schemes for graph data. 29th International Conference on Scientific and Statistical Database Management. United States of America: Association for Computing Machinery. pp. 1 - 12 https://doi.org/10.1145/3085504.3085516
Effective construction of relative Lempel-Ziv dictionaries
Liao, Kewen, Petri, Matthias, Moffat, Alistair and Wirth, Anthony. (2016) Effective construction of relative Lempel-Ziv dictionaries. WWW '16: 25th International World Wide Web Conference. Switzerland: Association for Computing Machinery. pp. 807 - 816 https://doi.org/10.1145/2872427.2883042
Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy
Xu, Guirong, Stick Ware, Randolph, Zhang, Wengang, Feng, Guangliu, Liao, Kewen and Liu, Yibing. (2014) Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy. Atmospheric Research. 140-141, pp. 85 - 94. https://doi.org/10.1016/j.atmosres.2014.01.021