Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells

Journal article


Dénes Nagy, Mónika Gönczi, Beatrix Dienes, Árpád Szöőr, János Fodor, Zsuzsanna Nagy, Adrienn Tóth, Tamás Fodor, Péter Bai, Zoltan Rusznak and László Csernoch. (2014). Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells. Archives of Dermatological Research. 306(10), pp. 885-902. https://doi.org/10.1007/s00403-014-1511-5
AuthorsDénes Nagy, Mónika Gönczi, Beatrix Dienes, Árpád Szöőr, János Fodor, Zsuzsanna Nagy, Adrienn Tóth, Tamás Fodor, Péter Bai, Zoltan Rusznak and László Csernoch
Abstract

TASK-3 (KCNK9 or K2P9.1) channels are thought to promote proliferation and/or survival of malignantly transformed cells, most likely by increasing their hypoxia tolerance. Based on our previous results that suggested mitochondrial expression of TASK-3 channels, we hypothesized that TASK-3 channels have roles in maintaining mitochondrial activity. In the present work we studied the effect of reduced TASK-3 expression on the mitochondrial function and survival of WM35 and A2058 melanoma cells. TASK-3 knockdown cells had depolarized mitochondrial membrane potential and contained a reduced amount of mitochondrial DNA. Compared to their scrambled shRNA-transfected counterparts, they demonstrated diminished responsiveness to the application of the mitochondrial uncoupler [(3-chlorophenyl)hydrazono]malononitrile (CCCP). These observations indicate impaired mitochondrial function. Further, TASK-3 knockdown cells presented reduced viability, decreased total DNA content, altered cell morphology, and reduced surface area. In contrast to non- and scrambled shRNA-transfected melanoma cell lines, which did not present noteworthy apoptotic activity, almost 50 % of the TASK-3 knockdown cells exhibited strong Annexin-V-specific immunofluorescence signal. Sequestration of cytochrome c from the mitochondria to the cytosol, increased caspase 3 activity, and translocation of the apoptosis-inducing factor from mitochondria to cell nuclei were also demonstrated in TASK-3 knockdown cells. Interference with TASK-3 channel expression, therefore, induces caspase-dependent and -independent apoptosis of melanoma cells, most likely via causing mitochondrial depolarization. Consequently, TASK-3 channels may be legitimate targets of future melanoma therapies.

KeywordsWM35 melanoma cells; A2058 melanoma cells; TASK-3 knockdown; Mitotracker; JC-1; Mitochondrial membrane potential; CCCP; Caspase 3; Cytochrome c
Year2014
JournalArchives of Dermatological Research
Journal citation306 (10), pp. 885-902
PublisherSpringer-Verlag
ISSN0340-3696
Digital Object Identifier (DOI)https://doi.org/10.1007/s00403-014-1511-5
Scopus EID2-s2.0-84922080415
Publisher's version
File Access Level
Controlled
Publication process dates
Deposited27 Apr 2021
Permalink -

https://acuresearchbank.acu.edu.au/item/8vy2z/silencing-the-kcnk9-potassium-channel-task-3-gene-disturbs-mitochondrial-function-causes-mitochondrial-depolarization-and-induces-apoptosis-of-human-melanoma-cells

Restricted files

Publisher's version

  • 48
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Odor enrichment increases hippocampal neuron numbers in mouse
Zoltan Rusznak, Gulgun Sengu, George Paxinos, Woojin Scott Kim and YuHong Fu. (2018). Odor enrichment increases hippocampal neuron numbers in mouse. Experimental Neurobiology. 27(2), pp. 94-102. https://doi.org/10.5607/en.2018.27.2.94
Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary
Tamás Malina, László Krecsák, Alexander Westerström, Gábor Szemán-Nagy, Gyöngyi Gyémánt, Márta M-Hamvas, Edward G. Rowan, Alan L. Harvey, David A. Warrell, Balázs Pál, Zoltan Rusznak and Gábor Vasas. (2017). Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary. Toxicon. 135, pp. 59-70. https://doi.org/10.1016/j.toxicon.2017.06.004
Early in vivo effects of the human mutant amyloid-β protein precursor (hAβPPSwInd) on the mouse olfactory bulb
Rusznák, Zoltán, Kim, Woojin Scott, Hsiao, Jen-Hsiang T., Halliday, Glenda M., Paxinos, George and Fu, YuHong. (2016). Early in vivo effects of the human mutant amyloid-β protein precursor (hAβPPSwInd) on the mouse olfactory bulb. Journal of Alzheimer's Disease. 49(2), pp. 443-457. https://doi.org/10.3233/JAD-150368
Adult neurogenesis and gliogenesis: Possible mechanisms for neurorestoration
Zoltan Rusznak, Willem Henskens, Emma Schofield, Woojin Scott Kim and YuHong Fu. (2016). Adult neurogenesis and gliogenesis: Possible mechanisms for neurorestoration. Experimental Neurobiology. 25(3), pp. 103-112. https://doi.org/10.5607/en.2016.25.3.103
The spinal cord of the common marmoset (Callithrix jacchus)
Charles Watson, Gulgun Sengul, Ikuko Tanaka, Zoltan Rusznak and Hironobu Tokuno. (2015). The spinal cord of the common marmoset (Callithrix jacchus). Journal of Neuroscience Research. 93, pp. 164-175. https://doi.org/10.1016/j.neures.2014.12.012
Aging-dependent changes in the cellular composition of the mouse brain and spinal cord
Y. Fu, Y. Yu, G. Paxinos, C. Watson and Z. Rusznak. (2015). Aging-dependent changes in the cellular composition of the mouse brain and spinal cord. Neuroscience. 290, pp. 406-420. https://doi.org/10.1016/j.neuroscience.2015.01.039
Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hAβPPSwInd-J20 mouse
Fu, YuHong, Rusznak, Zoltan, Kwok, John B.J., Kim, Woojin Scott and Paxinos, George. (2014). Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hAβPPSwInd-J20 mouse. Journal of Alzheimer's Disease. 41(4), pp. 1177-1192. https://doi.org/10.3233/JAD-132717
Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: A quantitative study using Fluoro-Gold retrograde tracing
Tímea Bácskai, Zoltan Rusznak, George Paxinos and Charles Watson. (2014). Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: A quantitative study using Fluoro-Gold retrograde tracing. Brain Structure and Function. 219(1), pp. 303-321. https://doi.org/10.1007/s00429-012-0501-7