A lower bound on the zero forcing number

Journal article


Davila, Randy, Kalinowski, Thomas and Stephen, Sudeep. (2018). A lower bound on the zero forcing number. Discrete Applied Mathematics. 250, pp. 363-367. https://doi.org/10.1016/j.dam.2018.04.015
AuthorsDavila, Randy, Kalinowski, Thomas and Stephen, Sudeep
Abstract

In this note, we study a dynamic vertex coloring for a graph G. In particular, one starts with a certain set of vertices black, and all other vertices white. Then, at each time step, a black vertex with exactly one white neighbor forces its white neighbor to become black. The initial set of black vertices is called a zero forcing set if by iterating this process, all of the vertices in G become black. The zero forcing number of G is the minimum cardinality of a zero forcing set in G, and is denoted by Z(G). Davila and Kenter have conjectured in 2015 that Z(G) ≥ (g −3)(δ −2)+δ where g and δ denote the girth and the minimum degree of G, respectively. This conjecture has been proven for graphs with girth g ≤ 10. In this note, we present a proof for g ≥ 5, δ ≥ 2, thereby settling the conjecture.

Keywordszero forcing; propagation in graphs
Year2018
JournalDiscrete Applied Mathematics
Journal citation250, pp. 363-367
PublisherElsevier B.V.
ISSN0166-218X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.dam.2018.04.015
Scopus EID2-s2.0-85046868489
Page range363-367
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online14 Aug 2018
Publication process dates
Accepted06 Apr 2018
Deposited17 Nov 2023
Permalink -

https://acuresearchbank.acu.edu.au/item/8zz3v/a-lower-bound-on-the-zero-forcing-number

Restricted files

Publisher's version

  • 28
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Embedding Wheel-like Networks
Rajan, R. Sundara, Rajalaxmi, Rajalaksmi, Stephen, Sudeep, Shantrinal, A. Arul and Kumar, K. Jagadeesh. (2023). Embedding Wheel-like Networks. Iranian Academic Center for Education, Culture and Research. 18(2), pp. 185-198. https://doi.org/10.61186/ijmsi.18.2.185
Zero forcing in iterated line digraphs
Ferrero, Daniela, Kalinowski, Thomas and Stephen, Sudeep. (2019). Zero forcing in iterated line digraphs. Discrete Applied Mathematics. 255, pp. 198-208. https://doi.org/10.1016/j.dam.2018.08.019
Minimum rank and zero forcing number for butterfly networks
Ferrero, Daniela, Grigorious, Cyriac, Kalinowski, Thomas, Ryan, Joe and Stephen, Sudeep. (2019). Minimum rank and zero forcing number for butterfly networks. Journal of Combinatorial Optimization. 37(3), pp. 970-988. https://doi.org/10.1007/s10878-018-0335-1
Average distance in interconnection networks via reduction theorems for vertex-weighted graphs
Klavžar, Sandi, Manuel, Paul, Nadjafi-Arani, M. J., Rajan, R. Sundara, Grigorious, Cyriac and Stephen, Sudeep. (2016). Average distance in interconnection networks via reduction theorems for vertex-weighted graphs. The Computer Journal. 59(12), pp. 1900-1910. https://doi.org/10.1093/comjnl/bxw046
Resolving-power dominating sets
Stephen, Sudeep, Rajan, Bharati, Grigorious, Cyriac and William, Albert. (2015). Resolving-power dominating sets. Applied Mathematics and Computation. 256, pp. 778-785. https://doi.org/10.1016/j.amc.2015.01.037
On the Strong Metric Dimension of Tetrahedral Diamond Lattice
Manuel, Paul, Rajan, Bharati, Grigorious, Cyriac and Stephen, Sudeep. (2015). On the Strong Metric Dimension of Tetrahedral Diamond Lattice. Mathematics in Computer Science. 9(2), pp. 201-208. https://doi.org/10.1007/s11786-015-0226-0
Power domination in certain chemical structures
Stephen, Sudeep, Rajan, Bharati, Ryan, Joe, Grigorious, Cyriac and William, Albert. (2015). Power domination in certain chemical structures. Journal of Discrete Algorithms (Amsterdam). 33, pp. 10-18. https://doi.org/10.1016/j.jda.2014.12.003
On the metric dimension of circulant and Harary graphs
Grigorious, Cyriac, Manuel, Paul, Miller, Mirka, Rajan, Bharati and Stephen, Sudeep. (2014). On the metric dimension of circulant and Harary graphs. Applied Mathematics and Computation. 248, pp. 47-54. https://doi.org/10.1016/j.amc.2014.09.045
On the partition dimension of a class of circulant graphs
Grigorious, Cyriac, Stephen, Sudeep, Rajan, Bharati, Miller, Mirka and William, Albert. (2014). On the partition dimension of a class of circulant graphs. Information Processing Letters. 114(7), pp. 353-356. https://doi.org/10.1016/j.ipl.2014.02.005