Linking cortical and connectional pathology in Schizophrenia

Journal article


Di Biase, Maria Angelique, Cropley, Vanessa L., Cocchi, Luca, Fornito, Alexander, Calamante, Fernando, Ganella, Eleni P., Pantelis, Christos and Zalesky, Andrew. (2019). Linking cortical and connectional pathology in Schizophrenia. Schizophrenia Bulletin. 45(4), pp. 911-923. https://doi.org/10.1093/schbul/sby121
AuthorsDi Biase, Maria Angelique, Cropley, Vanessa L., Cocchi, Luca, Fornito, Alexander, Calamante, Fernando, Ganella, Eleni P., Pantelis, Christos and Zalesky, Andrew
Abstract

Schizophrenia is associated with cortical thickness (CT) deficits and breakdown in white matter microstructure. Whether these pathological processes are related remains unclear. We used multimodal neuroimaging to investigate the relationship between regional cortical thinning and breakdown in adjacent infracortical white matter as a function of age and illness duration. Structural magnetic resonance and diffusion images were acquired in 218 schizophrenia patients and 167 age-matched healthy controls to map CT and fractional anisotropy in regionally adjacent infracortical white matter at various cortical depths. We found a robust and reproducible relationship between thickness and anisotropy deficits, which were inversely correlated across cortical regions (r = −.5, P < .0001): the most anisotropic infracortical white matter was found adjacent to regions with extensive cortical thinning. This pattern was evident in early (20 y: r = −.3, P = .005) and middle life (30 y: r = −.4, P = .004, 40 y: r = −.3, P = .04), but not beyond 50 years (P > .05). Frontal pathology contributed most to this pattern, with cortical thinning in patients compared to controls at all ages (P < .05); in contrast to initially elevated frontal white matter anisotropy in patients at 30 years, followed by rapid white matter decline with age (rate of annual decline; patients: 0.0012, controls 0.0006, P < .001). Our findings point to pathological dependencies between gray and white matter in a large sample of schizophrenia patients. We argue that elevated frontal anisotropy reflects regionally-specific, compensatory responses to cortical thinning, which are eventually overwhelmed with increasing illness duration.

Keywordsneuropsychiatry; multimodal imaging; computational psychiatry; cortical thickness; diffusion; tractography
Year2019
JournalSchizophrenia Bulletin
Journal citation45 (4), pp. 911-923
PublisherNLM (Medline)
ISSN0586-7614
Digital Object Identifier (DOI)https://doi.org/10.1093/schbul/sby121
Scopus EID2-s2.0-85068431356
Research or scholarlyResearch
Page range911-923
FunderAustralian Research Council (ARC)
National Health and Medical Research Council (NHMRC)
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online12 Sep 2018
Publication process dates
Deposited11 Jul 2021
ARC Funded ResearchThis output has been funded, wholly or partially, under the Australian Research Council Act 2001
Grant IDARC/FT130100589
NHMRC/386500
NHMRC/628880
NHMRC/1099082
NHMRC/1138711
NHMRC/628386
NHMRC/1105825
NHMRC/1047648
Permalink -

https://acuresearchbank.acu.edu.au/item/8w586/linking-cortical-and-connectional-pathology-in-schizophrenia

Restricted files

Publisher's version

  • 55
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Predicting individual improvement in schizophrenia symptom severity at 1-year follow-up : Comparison of connectomic, structural, and clinical predictors
Kottaram, Akhil, Johnston, Leigh A., Tian, Ye, Ganella, Eleni P., Laskaris, Liliana, Cocchi, Luca, McGorry, Patrick, Pantelis, Christos, Kotagiri, Ramamohanarao, Cropley, Vanessa and Zalesky, Andrew. (2020). Predicting individual improvement in schizophrenia symptom severity at 1-year follow-up : Comparison of connectomic, structural, and clinical predictors. Human Brain Mapping. 41(12), pp. 3342-3357. https://doi.org/10.1002/hbm.25020
Does cortical brain morphology act as a mediator between childhood trauma and transition to psychosis in young individuals at ultra-high risk?
Rapado-Castro, Marta, Whittle, Sarah, Pantelis, Christos, Thompson, Andrew, Nelson, Barnaby, Ganella, Eleni P., Lin, Ashleigh, Reniers, Renate L. E. P., McGorry, Patrick D., Yung, Alison R., Wood, Stephen J. and Bartholomeusz, Cali F.. (2020). Does cortical brain morphology act as a mediator between childhood trauma and transition to psychosis in young individuals at ultra-high risk? Schizophrenia Research. 224, pp. 116-125. https://doi.org/10.1016/j.schres.2020.09.017
Evidence for network-based cortical thickness reductions in schizophrenia
Wannan, Cassandra M. J., Cropley, Vanessa L., Chakravarty, M. Mallar, Bousman, Chad, Ganella, Eleni P., Bruggemann, Jason M., Weickert, Thomas W., Weickert, Cynthia Shannon, Everall, Ian, McGorry, Patrick, Velakoulis, Dennis, Wood, Stephen J., Bartholomeusz, Cali F., Pantelis, Christos and Zalesky, Andrew. (2019). Evidence for network-based cortical thickness reductions in schizophrenia. American Journal of Psychiatry. 176(7), pp. 552-563. https://doi.org/10.1176/appi.ajp.2019.18040380
Brain network dynamics in schizophrenia: Reduced dynamism of the default mode network
Kottaram, Akhil, Johnston, Leigh A., Cocchi, Luca, Ganella, Eleni P., Everall, Ian, Pantelis, Christos, Kotagiri, Ramamohanarao and Zalesky, Andrew. (2019). Brain network dynamics in schizophrenia: Reduced dynamism of the default mode network. Human Brain Mapping. 40(7), pp. 2212 - 2228. https://doi.org/10.1002/hbm.24519
Spatio-temporal dynamics of resting-state brain networks improve single-subject prediction of schizophrenia diagnosis
Akhil Kottaram, Leigh A. Johnston, Eleni P Ganella, Christos Pantelis, Ramamohanarao Kotagiri and Andrew Zalesky. (2018). Spatio-temporal dynamics of resting-state brain networks improve single-subject prediction of schizophrenia diagnosis. Human Brain Mapping. 39(9), pp. 3663-3681. https://doi.org/10.1002/hbm.24202
Risk and resilience brain networks in treatment-resistant schizophrenia
Eleni P Ganella, Caio Seguin, Cali F Bartholomeusz, Sarah Whittle, Chad Bousman, Cassandra M.J. Wannan, Maria Angelique Di Biase, Christina Phassouliotis, I P Everall, Christos Pantelis and Andrew Zalesky. (2018). Risk and resilience brain networks in treatment-resistant schizophrenia. Schizophrenia Research. 193, pp. 284-292. https://doi.org/10.1016/j.schres.2017.07.014
Resting-state functional brain networks in first-episode psychosis: A 12-month follow-up study
Eleni P Ganella, Caio Seguin, Christos Pantelis, Sarah Whittle, Bernhard T Baune, James Olver, G Paul Amminger, Patrick D. McGorry, Vanessa L. Cropley, Andrew Zalesky and Cali F Bartholomeusz. (2018). Resting-state functional brain networks in first-episode psychosis: A 12-month follow-up study. Australian and New Zealand Journal of Psychiatry. 52(9), pp. 864-875. https://doi.org/10.1177/0004867418775833
Extinction of conditioned fear in adolescents and adults: A human fmri study
Despina E. Ganella, Katherine D. Drummond, Eleni P Ganella, Sarah Whittle and Jee Hyun Kim. (2018). Extinction of conditioned fear in adolescents and adults: A human fmri study. Frontiers in Human Neuroscience. 11, pp. 1-13. https://doi.org/10.3389/fnhum.2017.00647
An fMRI study of theory of mind in individuals with first episode psychosis
Cali F Bartholomeusz, Eleni P Ganella, Sarah Whittle, Kelly Allott, Andrew Thompson, Ahmad Abu-Akel, Henrik Walter, Patrick D. McGorry, Eoin Killackey, Christos Pantelis and Stephen J. Wood. (2018). An fMRI study of theory of mind in individuals with first episode psychosis. Psychiatry Research: Neuroimaging. 281, pp. 1-11. https://doi.org/10.1016/j.pscychresns.2018.08.011
Functional brain networks in treatment-resistant schizophrenia
Ganella, Eleni P., Bartholomeusz, Cali F., Seguin, Caio, Whittle, Sarah, Bousman, Chad, Phassouliotis, Christina, Everall, Ian, Pantelis, Christos and Zalesky, Andrew. (2017). Functional brain networks in treatment-resistant schizophrenia. Schizophrenia Research. 184, pp. 73-81. https://doi.org/10.1016/j.schres.2016.12.008
Role of orbitofrontal sulcogyral pattern on lifetime cannabis use and depressive symptoms
Chye, Yann, Solowij, Nadia, Ganella, Eleni P., Suo, Chao, Yücel, Murat, Batalla, Albert, Cousijn, Janna, Goudriaan, Anna E., Martin-Santos, Rocio, Whittle, Sarah, Bartholomeusz, Cali F. and Lorenzetti, Valentina. (2017). Role of orbitofrontal sulcogyral pattern on lifetime cannabis use and depressive symptoms. Progress in Neuropsychopharmacology and Biological Psychiatry. 79, pp. 392 - 400. https://doi.org/10.1016/j.pnpbp.2017.07.017
Abnormalities in orbitofrontal cortex gyrification and mental health outcomes in adolescents born extremely preterm and/or at an extremely low birth weight
Ganella, Eleni P., Burnett, Alice, Cheong, Jeanie, Thompson, Deanne, Roberts, Gehan, Wood, Stephen, Lee, Katherine, Duff, Julianne, Anderson, Peter J., Pantelis, Christos, Doyle, Lex W., Bartholomeusz, Cali and on behalf of the Victorian Infant Collaborative Study, Group. (2015). Abnormalities in orbitofrontal cortex gyrification and mental health outcomes in adolescents born extremely preterm and/or at an extremely low birth weight. Human Brain Mapping. 36(3), pp. 1138-1150.
Effects of oxytocin and genetic variants on brain and behaviour : Implications for treatment in schizophrenia
Bartholomeusz, Cali, Ganella, Eleni, Labuschagne, Izelle, Bousman, Chad and Pantelis, Christos. (2015). Effects of oxytocin and genetic variants on brain and behaviour : Implications for treatment in schizophrenia. Schizophrenia Research. 168(3), pp. 614 - 627. https://doi.org/10.1016/j.schres.2015.06.007