Heterogeneous transfer learning in structural health monitoring for high rise structures

Conference paper


Anaissi, Ali, D’souza, Kenneth, Suleiman, Basem, Bekhit, Mahmoud and Alyassine, Widad. (2023). Heterogeneous transfer learning in structural health monitoring for high rise structures. Second international conference on innovations in computing research (ICR'23). Switzerland: Springer Nature. pp. 405 - 417 https://doi.org/10.1007/978-3-031-35308-6
AuthorsAnaissi, Ali, D’souza, Kenneth, Suleiman, Basem, Bekhit, Mahmoud and Alyassine, Widad
TypeConference paper
Abstract

Structural Health Monitoring aims to utilise sensor data to assess the integrity of structures. Machine learning is opening up the possibility for more accurate and informative metrics to be determined by leveraging the large volumes of data available in modern times. An unfortunate limitation to these advancements is the fact that these models typically only use data from the structure being modeled, and these data sets are typically limited, which in turn limits the predictive power of the models built on these datasets. Transfer learning is a subfield of machine learning that aims to use data from other sources to inform a model on a target task. Current research has been focused on employing this method-ology to real-world structures by using simulated structures for source information. This paper analyzes the feasibility of deploying this frame-work across multiple real-world structures. Data from two experimental scale models were evaluated in a multiclass damage detection problem. Damage in the structures was simulated through the removal of structural components. The dataset consists of the response from accelerometers equipped to the structures while the structures were under the influence of an external force. A convolution neural network (CNN) was used as the target-only model, and a Generative adversarial network (GAN) based CNN network was evaluated as the transfer learning model. The results show that transfer learning improves results in cases where limited data on the damaged target structure is available, however transfer learning is much less effective than traditional methods when there is a sufficient amount of data available.

KeywordsTransfer Learning; Convolution Neural Network; Damage Detection; Sensors; Structural Health Monitoring
Year01 Jan 2023
PublisherSpringer Nature
Digital Object Identifier (DOI)https://doi.org/10.1007/978-3-031-35308-6
Web address (URL)https://link.springer.com/book/10.1007/978-3-031-35308-6
Open accessPublished as non-open access
Research or scholarlyResearch
Publisher's version
License
All rights reserved
File Access Level
Controlled
Book titleProceedings of the Second International Conference on Innovations in Computing Research (ICR’23)
Page range405 - 417
Book editorDaimi, Kevin
Al Sadoon, Abeer
ISBN978-3-031-35308-6
Output statusPublished
Publication dates
Online16 Jun 2023
Publication process dates
Deposited04 Sep 2024
Additional information

The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

Place of publicationSwitzerland
Permalink -

https://acuresearchbank.acu.edu.au/item/90q15/heterogeneous-transfer-learning-in-structural-health-monitoring-for-high-rise-structures

Restricted files

Publisher's version

  • 126
    total views
  • 0
    total downloads
  • 89
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Optimizing Placement and Scheduling for VNF by a Multi-objective Optimization Genetic Algorithm
Thien, Phan Duc, Wu, Fan, Bekhit, Mahmoud, Fathalla, Ahmed and Salah, Ahmed. (2024). Optimizing Placement and Scheduling for VNF by a Multi-objective Optimization Genetic Algorithm. International Journal of Computational Intelligence Systems. 17(1), pp. 1-18. https://doi.org/10.1007/s44196-024-00430-x
A Survey of Trendy Financial Sector Applications of Machine and Deep Learning
Lestari, Nur Indah, Hussain, Walayat, Merigo, Jose and Bekhit, Mahmoud. (2023). A Survey of Trendy Financial Sector Applications of Machine and Deep Learning. Second EAI International Conference, BigIoT-EDU 2022. Switzerland: Springer Nature. pp. 619-633 https://doi.org/10.1007/978-3-031-23944-1_68
Multi-objective VNF placement optimization with NSGA-III
Bekhit, Mahmoud, Fathalla, Ahmed, Eldesouky, Esraa and Salah, Ahmad. (2023). Multi-objective VNF placement optimization with NSGA-III. 2023 International conference on advances in computing research (ACR'23). Switzerland: Springer Nature. pp. 481 - 493 https://doi.org/10.1007/978-3-031-33743-7_39
Comparing Ensemble Learning Techniques on Data Transmission Reduction for IoT Systems
Salah, Ahmad, Bekhit, Mahmoud, M. Alkalbani, Asma, Mohamed, Mohamed, Lestari, Nur Indah and Fathalla, Ahmed. (2023). Comparing Ensemble Learning Techniques on Data Transmission Reduction for IoT Systems. Switzerland: Springer Nature. pp. 72-85 https://doi.org/10.1007/978-3-031-33743-7_6
Price Prediction of Seasonal Items Using Time Series Analysis
Salah, Ahmed, Bekhit, Mahmoud, Eldesouky, Esraa, Ali, Ahmed and Fathalla, Ahmed. (2023). Price Prediction of Seasonal Items Using Time Series Analysis. Computer Systems Science and Engineering. 46(1), pp. 445-460. https://doi.org/10.32604/csse.2023.035254
Real-time and automatic system for performance evaluation of karate skills using motion capture sensors and continuous wavelet transform
Fathalla, Ahmed, Salah, Ahmad, Bekhit, Mahmoud, Eldesouky, Esraa, Talha, Ahmed, Zenhom, Abdalla and Ali, Ahmed. (2023). Real-time and automatic system for performance evaluation of karate skills using motion capture sensors and continuous wavelet transform. International Journal of Intelligent Systems. 2023, pp. 1-11. https://doi.org/10.1155/2023/1561942
An adaptive jellyfish search algorithm for packing items with conflict
El-Ashmawi, Walaa H., Salah, Ahmed, Bekhit, Mahmoud, Xiao, Guoqing, Al Ruqeishi, Khalil and Fathalla, Ahmed. (2023). An adaptive jellyfish search algorithm for packing items with conflict. Mathematics. 11(14), pp. 1-28. https://doi.org/10.3390/math11143219
A Survey of Trendy Financial Sector Applications of Machine and Deep Learning
Lestari, Nur Indah, Hussain, Walayat, Merigo, Jose and Bekhit, Mahmoud. (2023). A Survey of Trendy Financial Sector Applications of Machine and Deep Learning. Second EAI International Conference, BigIoT-EDU 2022. Virtual Event 29 - 31 Jul 2022 Switzerland: Springer. pp. 619-633 https://doi.org/10.1007/978-3-031-23944-1
A survey on deep learning architectures in human activities recognition application in sports science, healthcare, and security
Adel, Basant, Badran, Asmaa, Elshami, Nada, Salah, Ahmad, Fathalla, Ahmed and Bekhit, Mahmoud. (2022). A survey on deep learning architectures in human activities recognition application in sports science, healthcare, and security. ICR 2022 International Conference on Innovations in Computing Research. Athens, Greece 29 - 31 Aug 2022 Switzerland: Springer Nature. pp. 121 - 134 https://doi.org/10.1007/978-3-031-14054-9_13
Data Security in Hybrid Cloud Computing Using AES Encryption for Health Sector Organization
Bekhit, Mahmoud and Alsadoon, Abeer. (2022). Data Security in Hybrid Cloud Computing Using AES Encryption for Health Sector Organization. 7th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, (CITISIA). Sydney, Australia 14 - 16 Nov 2022 Switzerland: Springer Nature. pp. 155-167 https://doi.org/10.1007/978-3-031-29078-7_15
Machine learning and deep learning for predicting indoor and outdoor IoT temperature monitoring systems
Lestari, Nur Indah, Bekhit, Mahmoud, Mohamed, Mohamed, Fathalla, Ahmed and Salah, Ahmad. (2021). Machine learning and deep learning for predicting indoor and outdoor IoT temperature monitoring systems. IoT as a service 7th EAI international conference, IoTaas 2021. Sydney Australia 13 - 14 Dec 2021 Switzerland: Springer Nature. pp. 185 - 197 https://doi.org/10.1007/978-3-030-95987-6_13
A robust UWSN handover prediction system using ensemble learning
Eldesouky, Esraa, Bekhit, Mahmoud, Fathalla, Ahmed, Salah, Ahmed and Ali, Ahmed. (2021). A robust UWSN handover prediction system using ensemble learning. Sensors. 21(17), pp. 1-16. https://doi.org/10.3390/s21175777
Marine data prediction : An evaluation of machine learning, deep learning, and statistical predictive models
Ali, Ahmed, Fathalla, Ahmed, Salah, Ahmad, Bekhit, Mahmoud and Eldesouky, Esraa. (2021). Marine data prediction : An evaluation of machine learning, deep learning, and statistical predictive models. Computational Intelligence and Neuroscience  (Delisted by Scopus/WOS as a paper mill). 2021, pp. 1-13. https://doi.org/10.1155/2021/8551167
Multi objective resource optimisation for network function virtualisation requests
Bekhit, Mahmoud, Abolhasan, Mehran, Lipman, Justin, Liu, Ren and Ni, Wei. (2019). Multi objective resource optimisation for network function virtualisation requests. 26th International Conference on Systems Engineering (ICSEng). University of Technology Sydney, Australia 18 - 20 Dec 2018 Australia: IEEE Xplore. pp. 1-7 https://doi.org/10.1109/ICSENG.2018.8638192
Multi-objective transmitters placement problem in wireless networks
Gamal, Mahmoud, Morsy, Ehab and Fathy, Ahmed. (2015). Multi-objective transmitters placement problem in wireless networks. SoICT: Information and Communication Technology . Vietnam: Association for Computing Machinery. pp. 156 - 162 https://doi.org/10.1145/2833258.2833286
Multi-objective nodes placement problem in large regions wireless networks
Bekhit, Mahmoud, Morsy, Ehab and Salah, Ahmad. (2014). Multi-objective nodes placement problem in large regions wireless networks. 4th international conference on electronic, communications and networks (CECNet2014). Beijing, China 12 - 15 Dec 2014 China: CRC Press. pp. 61 - 66