A robust UWSN handover prediction system using ensemble learning
Journal article
Eldesouky, Esraa, Bekhit, Mahmoud, Fathalla, Ahmed, Salah, Ahmed and Ali, Ahmed. (2021). A robust UWSN handover prediction system using ensemble learning. Sensors. 21(17), pp. 1-16. https://doi.org/10.3390/s21175777
Authors | Eldesouky, Esraa, Bekhit, Mahmoud, Fathalla, Ahmed, Salah, Ahmed and Ali, Ahmed |
---|---|
Abstract | The use of underwater wireless sensor networks (UWSNs) for collaborative monitoring and marine data collection tasks is rapidly increasing. One of the major challenges associated with building these networks is handover prediction; this is because the mobility model of the sensor nodes is different from that of ground-based wireless sensor network (WSN) devices. Therefore, handover prediction is the focus of the present work. There have been limited efforts in addressing the handover prediction problem in UWSNs and in the use of ensemble learning in handover prediction for UWSNs. Hence, we propose the simulation of the sensor node mobility using real marine data collected by the Korea Hydrographic and Oceanographic Agency. These data include the water current speed and direction between data. The proposed simulation consists of a large number of sensor nodes and base stations in a UWSN. Next, we collected the handover events from the simulation, which were utilized as a dataset for the handover prediction task. Finally, we utilized four machine learning prediction algorithms (i.e., gradient boosting, decision tree (DT), Gaussian naive Bayes (GNB), and K-nearest neighbor (KNN)) to predict handover events based on historically collected handover events. The obtained prediction accuracy rates were above 95%. The best prediction accuracy rate achieved by the state-of-the-art method was 56% for any UWSN. Moreover, when the proposed models were evaluated on performance metrics, the measured evolution scores emphasized the high quality of the proposed prediction models. While the ensemble learning model outperformed the GNB and KNN models, the performance of ensemble learning and decision tree models was almost identical. |
Keywords | ensemble learning ; gradient boost; handover prediction; machine learning; sea buoys; underwater wireless sensor networks |
Year | 01 Jan 2021 |
Journal | Sensors |
Journal citation | 21 (17), pp. 1-16 |
Publisher | MDPI |
ISSN | 1424-8220 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/s21175777 |
Web address (URL) | https://www.mdpi.com/1424-8220/21/17/5777 |
Open access | Open access |
Research or scholarly | Research |
Page range | 1-16 |
Publisher's version | License File Access Level Open |
Output status | Published |
Publication dates | |
Online | 27 Aug 2021 |
Publication process dates | |
Accepted | 18 Aug 2021 |
Deposited | 19 Jun 2024 |
Additional information | Copyright: © 2021 by the authors. |
This article is an open access article | |
Place of publication | Switzerland |
https://acuresearchbank.acu.edu.au/item/909v5/a-robust-uwsn-handover-prediction-system-using-ensemble-learning
Download files
Publisher's version
OA_Bekhit_2021_A_robust_UWSN_handover_prediction_system.pdf | |
License: CC BY 4.0 | |
File access level: Open |
39
total views18
total downloads4
views this month1
downloads this month