Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes

Journal article


Okun, Jürgen G., Rusu, Patricia M., Chan, Andrea Y., Wu, Yuqin, Yap, Yann W., Sharkie, Thomas, Schumacher, Jonas, Schmidt, Kathrin V., Roberts-Thomson, Katherine M., Russell, Ryan D., Zota, Annika, Hille, Susanne, Jungmann, Andreas, Maggi, Ludovico, Lee, Young, Blüher, Matthias, Herzig, Stephan, Keske, Michelle A., Heikenwalder, Mathias, ... Rose, Adam J.. (2021). Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nature Metabolism. 3(3), pp. 394-409. https://doi.org/10.1038/s42255-021-00369-9
AuthorsOkun, Jürgen G., Rusu, Patricia M., Chan, Andrea Y., Wu, Yuqin, Yap, Yann W., Sharkie, Thomas, Schumacher, Jonas, Schmidt, Kathrin V., Roberts-Thomson, Katherine M., Russell, Ryan D., Zota, Annika, Hille, Susanne, Jungmann, Andreas, Maggi, Ludovico, Lee, Young, Blüher, Matthias, Herzig, Stephan, Keske, Michelle A., Heikenwalder, Mathias, Müller, Oliver J. and Rose, Adam J.
Abstract

Both obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we show that systemic alanine metabolism is linked to glycaemic control. We find that expression of alanine aminotransferases is increased in the liver in mice with obesity and diabetes, as well as in humans with type 2 diabetes. Hepatocyte-selective silencing of both alanine aminotransferase enzymes in mice with obesity and diabetes retards hyperglycaemia and reverses skeletal muscle atrophy through restoration of skeletal muscle protein synthesis. Mechanistically, liver alanine catabolism driven by chronic glucocorticoid and glucagon signalling promotes hyperglycaemia and skeletal muscle wasting. We further provide evidence for amino acid–induced metabolic cross-talk between the liver and skeletal muscle in ex vivo experiments. Taken together, we reveal a metabolic inter-tissue cross-talk that links skeletal muscle atrophy and hyperglycaemia in type 2 diabetes.

Year2021
JournalNature Metabolism
Journal citation3 (3), pp. 394-409
PublisherNature Publishing Group
ISSN2522-5812
Digital Object Identifier (DOI)https://doi.org/10.1038/s42255-021-00369-9
PubMed ID33758419
Scopus EID2-s2.0-85103197811
Page range394-409
FunderHelmholtz International Graduate School for Cancer Research
European Research Council (ERC)
European Union
Helmholtz Future Topics
European Foundation for the Study of Diabetes (EFSD)
Eli Lilly
Sir Edward Dunlop Medical Research Foundation
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online18 Mar 2021
Publication process dates
Accepted18 Feb 2021
Deposited31 Mar 2025
Grant IDSFBTR209
SFBTR179
667273
Permalink -

https://acuresearchbank.acu.edu.au/item/9182w/liver-alanine-catabolism-promotes-skeletal-muscle-atrophy-and-hyperglycaemia-in-type-2-diabetes

Restricted files

Publisher's version

  • 8
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Impaired postprandial adipose tissue microvascular blood flow responses to a mixed-nutrient meal in first-degree relatives of adults with type 2 diabetes
Roberts-Thomson, Katherine M., Hu, Donghua, Russell, Ryan D., Greenaway, Timothy, Betik, Andrew C., Parker, Lewan, Kaur, Gunveen, Richards, Stephen M., Premilovac, Dino, Wadley, Glenn D. and Keske, Michelle A.. (2022). Impaired postprandial adipose tissue microvascular blood flow responses to a mixed-nutrient meal in first-degree relatives of adults with type 2 diabetes. American Journal of Physiology: Endocrinology and Metabolism. 323(5), pp. E418-E427. https://doi.org/10.1152/ajpendo.00109.2022
Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes
Russell, Ryan D., Roberts-Thomson, Katherine M., Hu, Donghua, Greenaway, Timothy, Betik, Andrew C., Parker, Lewan, Sharman, James E., Richards, Stephen M., Rattigan, Stephen, Premilovac, Dino, Wadley, Glenn D. and Keske, Michelle A.. (2022). Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes. Diabetologia. 65(1), pp. 216-225. https://doi.org/10.1007/s00125-021-05572-7
Oral and intravenous glucose administration elicit opposing microvascular blood flow responses in skeletal muscle of healthy people : Role of incretins
Roberts-Thomson, Katherine, Parker, Lewan, Betik, Andrew C., Wadley, Greg D., Della Gatta, Paul A., Marwick, Thomas H. and Keske, Michelle A.. (2022). Oral and intravenous glucose administration elicit opposing microvascular blood flow responses in skeletal muscle of healthy people : Role of incretins. The Journal of Physiology. 600(7), pp. 1667-1681. https://doi.org/10.1113/JP282428
Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a high-glucose mixed meal in healthy young men
Parker, Lewan, Morrison, Dale J., Wadley, Glenn D., Shaw, Christopher S., Betik, Andrew C., Roberts-Thomson, Katherine, Kaur, Gunveen and Keske, Michelle A.. (2021). Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a high-glucose mixed meal in healthy young men. The Journal of Physiology. 599(1), pp. 83-102. https://doi.org/10.1113/JP280651
Postprandial microvascular blood flow in skeletal muscle : Similarities and disparities to the hyperinsulinaemic-euglycaemic clamp
Roberts-Thomson, Katherine M., Betik, Andrew C., Premilovac, Dino, Rattigan, Stephen, Richards, Stephen M., Ross, Renee M., Russell, Ryan D., Kaur, Gunveen, Parker, Lewan and Keske, Michelle A.. (2020). Postprandial microvascular blood flow in skeletal muscle : Similarities and disparities to the hyperinsulinaemic-euglycaemic clamp. Clinical and Experimental Pharmacology & Physiology. 47(4), pp. 725-737. https://doi.org/10.1111/1440-1681.13237
High-glucose mixed-nutrient meal ingestion impairs skeletal muscle microvascular blood flow in healthy young men
Parker, Lewan, Morrison, Dale J., Betik, Andrew C., Roberts-Thomson, Katherine, Kaur, Gunveen, Wadley, Glenn D., Sha, Christopher S. and Kesk, Michelle A.. (2020). High-glucose mixed-nutrient meal ingestion impairs skeletal muscle microvascular blood flow in healthy young men. American Journal of Physiology: Endocrinology and Metabolism. 318(6), pp. 1014-1021. https://doi.org/10.1152/AJPENDO.00540.2019