Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a high-glucose mixed meal in healthy young men

Journal article


Parker, Lewan, Morrison, Dale J., Wadley, Glenn D., Shaw, Christopher S., Betik, Andrew C., Roberts-Thomson, Katherine, Kaur, Gunveen and Keske, Michelle A.. (2021). Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a high-glucose mixed meal in healthy young men. The Journal of Physiology. 599(1), pp. 83-102. https://doi.org/10.1113/JP280651
AuthorsParker, Lewan, Morrison, Dale J., Wadley, Glenn D., Shaw, Christopher S., Betik, Andrew C., Roberts-Thomson, Katherine, Kaur, Gunveen and Keske, Michelle A.
Abstract

Key points

• Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion increases muscle microvascular blood flow which in part facilitates glucose delivery and disposal. In contrast, high-glucose ingestion impairs muscle microvascular blood flow which may contribute to impaired postprandial metabolism.
• We investigated the effects of prior cycling exercise on postprandial muscle microvascular blood flow responses to a high-glucose mixed-nutrient meal ingested 3 and 24 h post-exercise.
• Prior exercise enhanced muscle microvascular blood flow and mitigated microvascular impairments induced by a high-glucose mixed meal ingested 3 h post-exercise, and to a lesser extent 24 h post-exercise.
• High-glucose ingestion 3 h post-exercise leads to greater postprandial blood glucose, non-esterified fatty acids, and fat oxidation, and a delay in the insulin response to the meal compared to control.
• Effects of acute exercise on muscle microvascular blood flow persist well after the cessation of exercise which may be beneficial for conditions characterized by microvascular and glycaemic dysfunction.

Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion lead to increased muscle microvascular blood flow (MBF), whereas high-glucose ingestion impairs MBF. We investigated whether prior cycling exercise could enhance postprandial muscle MBF and prevent MBF impairments induced by high-glucose mixed-nutrient meal ingestion. In a randomized cross-over design, eight healthy young men ingested a high-glucose mixed-nutrient meal (1.1 g glucose/kg body weight; 45% carbohydrate, 20% protein and 35% fat) after an overnight fast (no-exercise control) and 3 h and 24 h after moderate-intensity cycling exercise (1 h at 70–75% urn:x-wiley:00223751:media:tjp14439:tjp14439-math-0001). Skeletal muscle MBF, measured directly by contrast-enhanced ultrasound, was lower at 60 min and 120 min postprandially compared to baseline in all conditions (P < 0.05), with a greater decrease occurring from 60 min to 120 min in the control (no-exercise) condition only (P < 0.001). Despite this meal-induced decrease, MBF was still markedly higher compared to control in the 3 h post-exercise condition at 0 min (pre-meal; 74%, P = 0.004), 60 min (112%, P = 0.002) and 120 min (223%, P < 0.001), and in the 24 h post-exercise condition at 120 min postprandially (132%, P < 0.001). We also report that in the 3 h post-exercise condition postprandial blood glucose, non-esterified fatty acids (NEFAs), and fat oxidation were substantially elevated, and the insulin response to the meal delayed compared to control. This probably reflects a combination of increased post-exercise exogenous glucose appearance, substrate competition, and NEFA-induced insulin resistance. We conclude that prior cycling exercise elicits long-lasting effects on muscle MBF and partially mitigates MBF impairments induced by high-glucose mixed-nutrient meal ingestion.

Keywordsexercise; glycaemic control; vascular function
Year2021
JournalThe Journal of Physiology
Journal citation599 (1), pp. 83-102
PublisherJohn Wiley & Sons Ltd
ISSN0022-3751
Digital Object Identifier (DOI)https://doi.org/10.1113/JP280651
PubMed ID33191527
Scopus EID2-s2.0-85096856137
Page range83-102
FunderNational Health and Medical Research Council (NHMRC)
National Heart Foundation of Australia
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online15 Nov 2020
Publication process dates
Accepted09 Oct 2020
Deposited31 Mar 2025
Grant IDAPP1157930
Permalink -

https://acuresearchbank.acu.edu.au/item/9182x/prior-exercise-enhances-skeletal-muscle-microvascular-blood-flow-and-mitigates-microvascular-flow-impairments-induced-by-a-high-glucose-mixed-meal-in-healthy-young-men

Restricted files

Publisher's version

  • 8
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Impaired postprandial adipose tissue microvascular blood flow responses to a mixed-nutrient meal in first-degree relatives of adults with type 2 diabetes
Roberts-Thomson, Katherine M., Hu, Donghua, Russell, Ryan D., Greenaway, Timothy, Betik, Andrew C., Parker, Lewan, Kaur, Gunveen, Richards, Stephen M., Premilovac, Dino, Wadley, Glenn D. and Keske, Michelle A.. (2022). Impaired postprandial adipose tissue microvascular blood flow responses to a mixed-nutrient meal in first-degree relatives of adults with type 2 diabetes. American Journal of Physiology: Endocrinology and Metabolism. 323(5), pp. E418-E427. https://doi.org/10.1152/ajpendo.00109.2022
Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes
Russell, Ryan D., Roberts-Thomson, Katherine M., Hu, Donghua, Greenaway, Timothy, Betik, Andrew C., Parker, Lewan, Sharman, James E., Richards, Stephen M., Rattigan, Stephen, Premilovac, Dino, Wadley, Glenn D. and Keske, Michelle A.. (2022). Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes. Diabetologia. 65(1), pp. 216-225. https://doi.org/10.1007/s00125-021-05572-7
Oral and intravenous glucose administration elicit opposing microvascular blood flow responses in skeletal muscle of healthy people : Role of incretins
Roberts-Thomson, Katherine, Parker, Lewan, Betik, Andrew C., Wadley, Greg D., Della Gatta, Paul A., Marwick, Thomas H. and Keske, Michelle A.. (2022). Oral and intravenous glucose administration elicit opposing microvascular blood flow responses in skeletal muscle of healthy people : Role of incretins. The Journal of Physiology. 600(7), pp. 1667-1681. https://doi.org/10.1113/JP282428
Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes
Okun, Jürgen G., Rusu, Patricia M., Chan, Andrea Y., Wu, Yuqin, Yap, Yann W., Sharkie, Thomas, Schumacher, Jonas, Schmidt, Kathrin V., Roberts-Thomson, Katherine M., Russell, Ryan D., Zota, Annika, Hille, Susanne, Jungmann, Andreas, Maggi, Ludovico, Lee, Young, Blüher, Matthias, Herzig, Stephan, Keske, Michelle A., Heikenwalder, Mathias, ... Rose, Adam J.. (2021). Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nature Metabolism. 3(3), pp. 394-409. https://doi.org/10.1038/s42255-021-00369-9
Postprandial microvascular blood flow in skeletal muscle : Similarities and disparities to the hyperinsulinaemic-euglycaemic clamp
Roberts-Thomson, Katherine M., Betik, Andrew C., Premilovac, Dino, Rattigan, Stephen, Richards, Stephen M., Ross, Renee M., Russell, Ryan D., Kaur, Gunveen, Parker, Lewan and Keske, Michelle A.. (2020). Postprandial microvascular blood flow in skeletal muscle : Similarities and disparities to the hyperinsulinaemic-euglycaemic clamp. Clinical and Experimental Pharmacology & Physiology. 47(4), pp. 725-737. https://doi.org/10.1111/1440-1681.13237
High-glucose mixed-nutrient meal ingestion impairs skeletal muscle microvascular blood flow in healthy young men
Parker, Lewan, Morrison, Dale J., Betik, Andrew C., Roberts-Thomson, Katherine, Kaur, Gunveen, Wadley, Glenn D., Sha, Christopher S. and Kesk, Michelle A.. (2020). High-glucose mixed-nutrient meal ingestion impairs skeletal muscle microvascular blood flow in healthy young men. American Journal of Physiology: Endocrinology and Metabolism. 318(6), pp. 1014-1021. https://doi.org/10.1152/AJPENDO.00540.2019