MRT letter: Micro-to nanoscale sample collection for high throughput microscopy

Journal article


Cheong, Brandon Huey-Ping, Liew, Oi Wah and Ng, Tuck Wah. (2013). MRT letter: Micro-to nanoscale sample collection for high throughput microscopy. Microscopy Research and Technique. 76(8), pp. 767 - 773. https://doi.org/10.1002/jemt.22238
AuthorsCheong, Brandon Huey-Ping, Liew, Oi Wah and Ng, Tuck Wah
Abstract

In high throughput microscopy, it is often assumed that the objects under investigation are fixed spatially. In addition, it is also presumed that the objects are sufficiently populated, otherwise there will be need to search through vast tracks of field of views before any recording can be done. The ability to collect objects at one location in the hydrated state is thus desirable and this is a challenge when the density of target objects in a sample is very low. In this work, we report that the generation of a squeezing flow from a circular coverslip compressing on suspensions is able to collect particulate (microbeads, fluorescent nanobeads and live algal cells) and non‐particulate (EGFP) objects at the rim region of the coverslip. With a coverslip of 13 mm diameter, volumes between 2 µL and 4 µL were found to completely fill the coverslip without breaching the rims. Sample compression speeds between 100 µm/s and 1000 µm/s did not have any effect on object collection outcomes. In effect, the simple placement of coverslips on top the drop of sample by hand without a motorized translator was found to produce similar collection outcomes. Quantitative measurements confirmed that all the objects investigated were displaced and relocated at the rim regions to a very high degree. Microsc. Res. Tech. 76:767–773, 2013. © 2013 Wiley Periodicals, Inc.

Keywordshigh throughput microscopy; object collection; coverslips; squeeze flow
Year2013
JournalMicroscopy Research and Technique
Journal citation76 (8), pp. 767 - 773
PublisherJohn Wiley & Sons
ISSN1059-910X
Digital Object Identifier (DOI)https://doi.org/10.1002/jemt.22238
Scopus EID2-s2.0-84880704077
Page range767 - 773
Research GroupSchool of Behavioural and Health Sciences
Publisher's version
File Access Level
Controlled
Place of publicationUnited States of America
Permalink -

https://acuresearchbank.acu.edu.au/item/86504/mrt-letter-micro-to-nanoscale-sample-collection-for-high-throughput-microscopy

Restricted files

Publisher's version

  • 49
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Growth measurement of surface colonies of bacteria using augmented reality
Wildan, Ardan, Cheong, Brandon Huey-Ping, Xiao, Kevin, Liew, Oi Wah and Ng, Tuck Wah. (2020). Growth measurement of surface colonies of bacteria using augmented reality. Journal of Biological Education. 54(4), pp. 419-432. https://doi.org/10.1080/00219266.2019.1600571
Developing and demonstrating an augmented reality colorimetric titration tool
Tee, Nicholas Yee Kwang, Gan, Hong Seng, Li, Jonathan, Cheong, Brandon Huey-Ping, Tan, Han Yen, Liew, Oi Wah and Ng, Tuck Wah. (2018). Developing and demonstrating an augmented reality colorimetric titration tool. Journal of Chemical Education. 95(3), pp. 393 - 399. https://doi.org/10.1021/acs.jchemed.7b00618
Augmented reality experimentation on oxygen gas generation from hydrogen peroxide and bleach reaction
Gan, Hong Seng, Tee, Nicholas Yee Kwang, Bin Mamtaz, Mohammad Raziun, Xiao, Kevin, Cheong, Brandon Huey-Ping, Liew, Oi Wah and Ng, Tuck Wah. (2018). Augmented reality experimentation on oxygen gas generation from hydrogen peroxide and bleach reaction. Biochemistry and Molecular Biology Education. 46(3), pp. 245 - 252. https://doi.org/10.1002/bmb.21117
Versatile wetting measurement of microplate wells
Ng, Enoch Ming Wei, Cheong, Brandon Huey-Ping, Yu, Yang, Liew, Oi Wah and Ng, Tuck Wah. (2016). Versatile wetting measurement of microplate wells. Review of Scientific Instruments. 87(11), pp. 115107-1 - 115107-7. https://doi.org/10.1063/1.4965038
Controlled transport of captive bubbles on plastrons
Huynh, So Hung, Lau, Chun Yat, Cheong, Brandon Huey-Ping, Muradoglu, Murat, Liew, Oi Wah and Ng, Tuck Wah. (2015). Controlled transport of captive bubbles on plastrons. Soft Matter. 11(38), pp. 7474 - 7477. https://doi.org/10.1039/c5sm01910a
Plastron-mediated growth of captive bubbles on superhydrophobic surfaces
Huynh, So Hung, Zahidi, Alifa Afiah Ahmad, Muradoglu, Murat, Cheong, Brandon Huey-Ping and Ng, Tuck Wah. (2015). Plastron-mediated growth of captive bubbles on superhydrophobic surfaces. Langmuir. 31(24), pp. 6695 - 6703. https://doi.org/10.1021/acs.langmuir.5b00058
Concentrating nanoparticles in environmental monitoring
Cheong, Brandon Huey-Ping, Muradoglu, Murat, Liew, Oi Wah and Ng, Tuck Wah. (2015). Concentrating nanoparticles in environmental monitoring. Environmental Toxicology and Pharmacology. 40(1), pp. 187 - 190. https://doi.org/10.1016/j.etap.2015.06.015
Drop transfer between superhydrophobic wells using air logic control
Vuong, Thach, Cheong, Brandon Huey-Ping, Huynh, So Hung, Muradoglu, Murat, Liew, Oi Wah and Ng, Tuck Wah. (2015). Drop transfer between superhydrophobic wells using air logic control. Lab on a Chip. 15(4), pp. 991 - 995. https://doi.org/10.1039/c4lc01273a
Liquid-body resonance while contacting a rotating superhydrophobic surface
Chong, Matthew Lai Ho, Cheng, Michael, Katariya, Mayur, Muradoglu, Murat, Cheong, Brandon Huey-Ping, Zahidi, Alifa Afiah Ahmad, Yu, Yang, Liew, Oi Wah and Ng, Tuck Wah. (2015). Liquid-body resonance while contacting a rotating superhydrophobic surface. The European Physical Journal E. 38(119), pp. 1 - 9. https://doi.org/10.1140/epje/i2015-15119-y
Glycerol-water sessile drop elongation on PTFE inclines in relation to biochemical applications
Zahidi, Alifa Afiah Ahmad, Cheong, Brandon Huey-Ping, Huynh, So Hung, Vuong, Thach, Liew, Oi Wah and Ng, Tuck Wah. (2015). Glycerol-water sessile drop elongation on PTFE inclines in relation to biochemical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 486, pp. 21 - 28. https://doi.org/10.1016/j.colsurfa.2015.09.007
Uphill airflow transport of drops on superhydrophobic inclines
Chung, Dwayne Kim Chung, Katariya, Mayur, Huynh, So Hung, Cheong, Brandon Huey-Ping, Liew, Oi Wah, Muradoglu, Murat and Ng, Tuck Wah. (2015). Uphill airflow transport of drops on superhydrophobic inclines. Colloid and Interface Science Communication. 6, pp. 1 - 4. https://doi.org/10.1016/j.colcom.2015.06.001
Transparency microplates under impact
Lau, Chun Yat, Roslan, Zulhanif, Cheong, Brandon Huey-Ping, Chua, Wei Seong, Liew, Oi Wah and Ng, Tuck Wah. (2014). Transparency microplates under impact. Journal of Colloid and Interface Science. 426, pp. 56 - 63. https://doi.org/10.1016/j.jcis.2014.03.048
Microplates based on liquid bridges between glass rods
Cheong, Brandon Huey-Ping, Lye, Jonathan Kok Keung, Backhous, Scott, Liew, Oi Wah and Ng, Tuck Wah. (2013). Microplates based on liquid bridges between glass rods. Journal of Colloid and Interface Science. 397, pp. 177 - 184. https://doi.org/10.1016/j.jcis.2013.01.043
Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization
Vuong, Thach, Qi, Aisha, Muradoglu, Murat, Cheong, Brandon Huey-Ping, Liew, Oi Wah, Ang, Cui Xia, Fu, Jing, Yeo, Leslie, Friend, James and Ng, Tuck Wah. (2013). Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization. Soft Matter. 9(13), pp. 3631 - 3639. https://doi.org/10.1039/c3sm00016h
Surface-scribed transparency-based microplates
Li, Xin Ye, Cheong, Brandon Huey-Ping, Somers, Anthony, Liew, Oi Wah and Ng, Tuck Wah. (2013). Surface-scribed transparency-based microplates. Langmuir. 29(2), pp. 849 - 855. https://doi.org/10.1021/la304394s