Glycerol-water sessile drop elongation on PTFE inclines in relation to biochemical applications

Journal article


Zahidi, Alifa Afiah Ahmad, Cheong, Brandon Huey-Ping, Huynh, So Hung, Vuong, Thach, Liew, Oi Wah and Ng, Tuck Wah. (2015). Glycerol-water sessile drop elongation on PTFE inclines in relation to biochemical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 486, pp. 21 - 28. https://doi.org/10.1016/j.colsurfa.2015.09.007
AuthorsZahidi, Alifa Afiah Ahmad, Cheong, Brandon Huey-Ping, Huynh, So Hung, Vuong, Thach, Liew, Oi Wah and Ng, Tuck Wah
Abstract

The movement behavior of glycerol–water mixtures as sessile drops on a tilted PTFE incline is investigated here. The slip angles found showed complex relationships in relation to the mixture composition. Since the drop was found to breach its front contact line first, the levels of contact angle hysteresis did not have corresponding trends with the slip angles. However, the ratios of the drop lengths (at the point of detachment against that at equilibrium) had corresponding trends with the slip angle. The drop elongated in a two-stage manner as it was tilted progressively. Since this could not be ascribed to a sudden change in the gravitational force acting, it implied that the drop extended first as a single body before attempting to split into two. In considering the energetics involved, the change in the solid–liquid area was mainly used by the drop to adjust to the energy supplied by gravity. Comparative experiments done with drop compression and extension on the same surface eliminated the contribution from specific characteristics associated with the liquid and solid, and inaccuracies in the contact angle measurement method used. Turbidity measurements indicate the viability of using higher glycerol content to improve thermal stability of bovine serum albumin. The findings have important implications on the manner of how heat and mass transfer occurs for drops on inclines for biochemical applications.

Keywordsdrop; incline; elongation; contact angle; glycerol; PTFEa
Year2015
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
Journal citation486, pp. 21 - 28
PublisherElsevier
ISSN0927-7757
Digital Object Identifier (DOI)https://doi.org/10.1016/j.colsurfa.2015.09.007
Scopus EID2-s2.0-84941957625
Page range21 - 28
Research GroupSchool of Behavioural and Health Sciences
Publisher's version
File Access Level
Controlled
Grant IDARC/DP120100583
Place of publicationNetherlands
Permalink -

https://acuresearchbank.acu.edu.au/item/879x5/glycerol-water-sessile-drop-elongation-on-ptfe-inclines-in-relation-to-biochemical-applications

Restricted files

Publisher's version

  • 52
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Growth measurement of surface colonies of bacteria using augmented reality
Wildan, Ardan, Cheong, Brandon Huey-Ping, Xiao, Kevin, Liew, Oi Wah and Ng, Tuck Wah. (2020). Growth measurement of surface colonies of bacteria using augmented reality. Journal of Biological Education. 54(4), pp. 419-432. https://doi.org/10.1080/00219266.2019.1600571
Developing and demonstrating an augmented reality colorimetric titration tool
Tee, Nicholas Yee Kwang, Gan, Hong Seng, Li, Jonathan, Cheong, Brandon Huey-Ping, Tan, Han Yen, Liew, Oi Wah and Ng, Tuck Wah. (2018). Developing and demonstrating an augmented reality colorimetric titration tool. Journal of Chemical Education. 95(3), pp. 393 - 399. https://doi.org/10.1021/acs.jchemed.7b00618
Augmented reality experimentation on oxygen gas generation from hydrogen peroxide and bleach reaction
Gan, Hong Seng, Tee, Nicholas Yee Kwang, Bin Mamtaz, Mohammad Raziun, Xiao, Kevin, Cheong, Brandon Huey-Ping, Liew, Oi Wah and Ng, Tuck Wah. (2018). Augmented reality experimentation on oxygen gas generation from hydrogen peroxide and bleach reaction. Biochemistry and Molecular Biology Education. 46(3), pp. 245 - 252. https://doi.org/10.1002/bmb.21117
Versatile wetting measurement of microplate wells
Ng, Enoch Ming Wei, Cheong, Brandon Huey-Ping, Yu, Yang, Liew, Oi Wah and Ng, Tuck Wah. (2016). Versatile wetting measurement of microplate wells. Review of Scientific Instruments. 87(11), pp. 115107-1 - 115107-7. https://doi.org/10.1063/1.4965038
Controlled transport of captive bubbles on plastrons
Huynh, So Hung, Lau, Chun Yat, Cheong, Brandon Huey-Ping, Muradoglu, Murat, Liew, Oi Wah and Ng, Tuck Wah. (2015). Controlled transport of captive bubbles on plastrons. Soft Matter. 11(38), pp. 7474 - 7477. https://doi.org/10.1039/c5sm01910a
Plastron-mediated growth of captive bubbles on superhydrophobic surfaces
Huynh, So Hung, Zahidi, Alifa Afiah Ahmad, Muradoglu, Murat, Cheong, Brandon Huey-Ping and Ng, Tuck Wah. (2015). Plastron-mediated growth of captive bubbles on superhydrophobic surfaces. Langmuir. 31(24), pp. 6695 - 6703. https://doi.org/10.1021/acs.langmuir.5b00058
Concentrating nanoparticles in environmental monitoring
Cheong, Brandon Huey-Ping, Muradoglu, Murat, Liew, Oi Wah and Ng, Tuck Wah. (2015). Concentrating nanoparticles in environmental monitoring. Environmental Toxicology and Pharmacology. 40(1), pp. 187 - 190. https://doi.org/10.1016/j.etap.2015.06.015
Drop transfer between superhydrophobic wells using air logic control
Vuong, Thach, Cheong, Brandon Huey-Ping, Huynh, So Hung, Muradoglu, Murat, Liew, Oi Wah and Ng, Tuck Wah. (2015). Drop transfer between superhydrophobic wells using air logic control. Lab on a Chip. 15(4), pp. 991 - 995. https://doi.org/10.1039/c4lc01273a
Liquid-body resonance while contacting a rotating superhydrophobic surface
Chong, Matthew Lai Ho, Cheng, Michael, Katariya, Mayur, Muradoglu, Murat, Cheong, Brandon Huey-Ping, Zahidi, Alifa Afiah Ahmad, Yu, Yang, Liew, Oi Wah and Ng, Tuck Wah. (2015). Liquid-body resonance while contacting a rotating superhydrophobic surface. The European Physical Journal E. 38(119), pp. 1 - 9. https://doi.org/10.1140/epje/i2015-15119-y
Uphill airflow transport of drops on superhydrophobic inclines
Chung, Dwayne Kim Chung, Katariya, Mayur, Huynh, So Hung, Cheong, Brandon Huey-Ping, Liew, Oi Wah, Muradoglu, Murat and Ng, Tuck Wah. (2015). Uphill airflow transport of drops on superhydrophobic inclines. Colloid and Interface Science Communication. 6, pp. 1 - 4. https://doi.org/10.1016/j.colcom.2015.06.001
Transparency microplates under impact
Lau, Chun Yat, Roslan, Zulhanif, Cheong, Brandon Huey-Ping, Chua, Wei Seong, Liew, Oi Wah and Ng, Tuck Wah. (2014). Transparency microplates under impact. Journal of Colloid and Interface Science. 426, pp. 56 - 63. https://doi.org/10.1016/j.jcis.2014.03.048
Microplates based on liquid bridges between glass rods
Cheong, Brandon Huey-Ping, Lye, Jonathan Kok Keung, Backhous, Scott, Liew, Oi Wah and Ng, Tuck Wah. (2013). Microplates based on liquid bridges between glass rods. Journal of Colloid and Interface Science. 397, pp. 177 - 184. https://doi.org/10.1016/j.jcis.2013.01.043
Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization
Vuong, Thach, Qi, Aisha, Muradoglu, Murat, Cheong, Brandon Huey-Ping, Liew, Oi Wah, Ang, Cui Xia, Fu, Jing, Yeo, Leslie, Friend, James and Ng, Tuck Wah. (2013). Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization. Soft Matter. 9(13), pp. 3631 - 3639. https://doi.org/10.1039/c3sm00016h
Surface-scribed transparency-based microplates
Li, Xin Ye, Cheong, Brandon Huey-Ping, Somers, Anthony, Liew, Oi Wah and Ng, Tuck Wah. (2013). Surface-scribed transparency-based microplates. Langmuir. 29(2), pp. 849 - 855. https://doi.org/10.1021/la304394s
MRT letter: Micro-to nanoscale sample collection for high throughput microscopy
Cheong, Brandon Huey-Ping, Liew, Oi Wah and Ng, Tuck Wah. (2013). MRT letter: Micro-to nanoscale sample collection for high throughput microscopy. Microscopy Research and Technique. 76(8), pp. 767 - 773. https://doi.org/10.1002/jemt.22238