An incremental algorithm for discovering routine behaviours from smart meter data

Journal article


Wang, Jin, Cardell-Oliver, Rachel and Liu, Wei. (2016). An incremental algorithm for discovering routine behaviours from smart meter data. Knowledge-Based Systems. 113, pp. 61 - 74. https://doi.org/10.1016/j.knosys.2016.09.016
AuthorsWang, Jin, Cardell-Oliver, Rachel and Liu, Wei
Abstract

Smart meters become increasingly popular in measuring consumption of utilities such as electricity, gas and water. Mining consumption data reveals useful behavioural patterns about the latest use activities. In this paper, we define routine behaviours to characterize recurrent activities from smart meter data. Due to routine behaviours’ special characteristics, traditional pattern discovery algorithms such as motif discovery algorithms are not applicable. Therefore, we propose an efficient algorithm to discover routine behaviours of all possible lengths by incrementally growing subsequences. To ensure systematic evaluations, we first generated synthetic datasets with known ground truth. Experiments on synthetic datasets demonstrate that the proposed algorithm has comparable accuracy with a brute-force algorithm but requires less computing time. Furthermore, we demonstrate that useful domain knowledge can be extracted from discovered routines on two real-world datasets that record water consumption in two areas.

Keywordssmart metering; routine behaviour; subsequence growing; motif detection
Year2016
JournalKnowledge-Based Systems
Journal citation113, pp. 61 - 74
PublisherElsevier B.V.
ISSN0950-7051
Digital Object Identifier (DOI)https://doi.org/10.1016/j.knosys.2016.09.016
Scopus EID2-s2.0-84994804561
Page range61 - 74
Research GroupInstitute for Learning Sciences and Teacher Education (ILSTE)
Publisher's version
File Access Level
Controlled
Place of publicationNetherlands
Permalink -

https://acuresearchbank.acu.edu.au/item/89818/an-incremental-algorithm-for-discovering-routine-behaviours-from-smart-meter-data

Restricted files

Publisher's version

  • 91
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Teachers' ratings of social skills and problem behaviors as concurrent predictors of students' bullying behavior
Elliott, Stephen N., Hwang, Yoon-Suk and Wang, Jin. (2019). Teachers' ratings of social skills and problem behaviors as concurrent predictors of students' bullying behavior. Journal of Applied Developmental Psychology. 60, pp. 119 - 126. https://doi.org/10.1016/j.appdev.2018.12.005
Why choose teaching? A matter of choice : Evidence from the field
Wyatt-SmithWyatt-Smith, Claire, C., Wang, Jin, Alexander, Colette, Du Plessis, Anna, Hand, Kirstine and Colbert, Peta. (2017). Why choose teaching? A matter of choice : Evidence from the field Australia: Institute for Learning Sciences and Teacher Education, Australian Catholic University.
Probabilistic latent semantic analysis for multichannel biomedical signal clustering
Wang, Jin and She, Mary. (2016). Probabilistic latent semantic analysis for multichannel biomedical signal clustering. IEEE Signal Processing Letters. 23(12), pp. 1821 - 1824. https://doi.org/10.1109/LSP.2016.2623801
Patient admission prediction using a pruned fuzzy min--max neural network with rule extraction
Wang, Jin, Lim, Chee Peng, Creighton, Douglas, Khorsavi, Abbas, Nahavandi, Saeid, Ugon, Julien, Vamplew, Peter, Stranieri, Andrew, Martin, Laura and Freischmidt, Anton. (2014). Patient admission prediction using a pruned fuzzy min--max neural network with rule extraction. Neural Computing and Applications. 26(2), pp. 277 - 289. https://doi.org/10.1007/s00521-014-1631-z
Sparse representation with multi-manifold analysis for texture classification from few training images
Sun, Xiangping, Wang, Jin, She, Mary F. H. and Kong, Lingxue. (2014). Sparse representation with multi-manifold analysis for texture classification from few training images. Image and Vision Computing. 32(11), pp. 835 - 846. https://doi.org/10.1016/j.imavis.2014.07.001
Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis
Wang, Jin, Sun, Xiangping, Nahavandi, Saeid, Kouzani, Abbas, Wu, Yuchuan and She, Mary. (2014). Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis. Computer Methods and Programs in Biomedicine. 117(2), pp. 238 - 246. https://doi.org/10.1016/j.cmpb.2014.06.014
Human identification from ECG signals via sparse representation of local segments
Wang, Jin, She, Mary, Nahavandi, Saeid and Kouzani, Abbas. (2013). Human identification from ECG signals via sparse representation of local segments. IEEE Signal Processing Letters. 20(10), pp. 937 - 940. https://doi.org/10.1109/LSP.2013.2267593
Scale invariant texture classification via sparse representation
Sun, Xiangping, Wang, Jin, She, Mary F. H. and Kong, Lingxue. (2013). Scale invariant texture classification via sparse representation. Neurocomputing. 122, pp. 338 - 348. https://doi.org/10.1016/j.neucom.2013.06.016
Biomedical time series clustering based on non-negative sparse coding and probabilistic topic model
Wang, Jin, Liu, Ping, She, Mary F. H., Nahavandi, Saeid and Kouzani, Abbas. (2013). Biomedical time series clustering based on non-negative sparse coding and probabilistic topic model. Computer Methods and Programs in Biomedicine. 111(3), pp. 629 - 641. https://doi.org/10.1016/j.cmpb.2013.05.022
Sparse representation of local spatial-temporal features with dimensionality reduction for motion recognition
Wang, Jin, Sun, Xiangping, Liu, Ping, She, Mary F. H. and Kong, Lingxue. (2013). Sparse representation of local spatial-temporal features with dimensionality reduction for motion recognition. Neurocomputing. 115, pp. 150 - 160. https://doi.org/10.1016/j.neucom.2013.01.012
Unsupervised mining of long time series based on latent topic model
Wang, Jin, Sun, Xiangping, She, Mary FH, Kouzani, Abbas and Nahavandi, Saeid. (2013). Unsupervised mining of long time series based on latent topic model. Nurocomputing. 103, pp. 93 - 103. https://doi.org/10.1016/j.neucom.2012.09.008
Supervised learning probabilistic latent semantic analysis for human motion analysis
Wang, Jin, Liu, Ping, She, Mary F. H., Kouzani, Abbas and Nahavandi, Saeid. (2013). Supervised learning probabilistic latent semantic analysis for human motion analysis. Neurocomputing. 100, pp. 134 - 143. https://doi.org/10.1016/j.neucom.2011.10.033
Bag-of-words representation for biomedical time series classification
Wang, Jin, Liu, Ping, She, Mary F. H., Nahavandi, Saeid and Kouzani, Abbas. (2013). Bag-of-words representation for biomedical time series classification. Biomedical Signal Processing and Control. 8(6), pp. 634 - 644. https://doi.org/10.1016/j.bspc.2013.06.004
Intelligent clothing for automated recognition of human physical activities in free-living environment
Wu, Yuchuan, Chen, Ronghua, Wang, Jin, Sun, Xiangping and She, Mary F. H.. (2012). Intelligent clothing for automated recognition of human physical activities in free-living environment. Journal of the Textile Institute. 103(8), pp. 806 - 816. https://doi.org/10.1080/00405000.2011.611641