Quantitative research design to evaluate learning platforms and learning methods for cyber-security courses

Conference item


Biswas, Kamanashis and Muthukkumarasamy, Vallipuram. (2017). Quantitative research design to evaluate learning platforms and learning methods for cyber-security courses. Australian Association for Environmental Education (AAEE) Conference. Sydney, Australia: Australasian Association for Engineering Education. pp. 793 - 799
AuthorsBiswas, Kamanashis and Muthukkumarasamy, Vallipuram
Abstract

CONTEXT Teaching security courses is a challenging task in computer science program since it requires careful integration of theoretical concepts with their practical applications. In this paper, a quantitative approach is used to evaluate effective learning platforms and different learning styles for cyber-security courses. The outcomes of the study show that practice-based learning is the most effective learning method for cyber-security courses and student performance can further be enhanced significantly through social learning instead of solitary learning.
PURPOSE The main goal of this research is to understand the effects of learning styles and platforms for successful adaptation of different pedagogical practices. The following research questions are designed to achieve the expected outcomes. For cyber-security courses, does the performance of a student match with his/her selfspecified learning performance? How learning platforms affect a student's performance in cyber-security courses? What factors play significant roles to successfully run a cyber-security course? Which type of learning mechanism is the most effective for cyber-security courses? Is learning in a group better than individual learning?
APPROACH Quantitative research is defined as a scientific method which follows a number of procedures such as generation of models, identifying theories and hypotheses, development of instrumentals and methods for measurement, experimental control and manipulation of variables, collection of empirical data, modelling and analysis of data and evaluation of results. This research follows experimental modes of inquiry which follows a standard form namely, participants, materials, procedures and measures.
RESULTS The results show that there is no single platform that includes all features to successfully run a cyber-security course. However, this problem can be solved by integrating those features with existing platforms. The study also suggests that learning performance can further be enhanced by choosing appropriate learning style.
CONCLUSIONS This paper investigates the impacts of learning platforms and learning strategies for cyber-security courses. Similar experiments from different aspects will be interesting to test their validity. The outcome can be used for further decision making e.g., the correlation of learning style difference could help to determine whether customized learning styles would be more effective for teaching cyber-security courses.

KeywordsQuantitative research; Learning style; Cyber-security
Year2017
Journal28th Annual Conference of the Australasian Association for Engineering Education (AAEE 2017)
PublisherAustralasian Association for Engineering Education
Open accessOpen access
Publisher's version
License
Page range793 - 799
ISBN9780646980263
Research GroupPeter Faber Business School
Place of publicationSydney, Australia
Permalink -

https://acuresearchbank.acu.edu.au/item/8qvwy/quantitative-research-design-to-evaluate-learning-platforms-and-learning-methods-for-cyber-security-courses

Download files

  • 417
    total views
  • 295
    total downloads
  • 4
    views this month
  • 1
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Robust integration of blockchain and explainable federated learning for automated credit scoring
Jovanovic, Zorka, Hou, Zhe, Biswas, Kamanashis and Muthukkumarasamy, Vallipuram. (2024). Robust integration of blockchain and explainable federated learning for automated credit scoring. Computer Networks. 243, pp. 1-16. https://doi.org/10.1016/j.comnet.2024.110303
Impacts of integration of learning activities with video modules in asynchronous learning
Biswas, Kamanashis, Sridharan, Bhavani and Chowdhury, Mohammad. (2023). Impacts of integration of learning activities with video modules in asynchronous learning. Australia: Australasian Association for Engineering Education. pp. 1
A multipath routing protocol for secure energy efficient communication in Wireless Sensor Networks
Biswas, Kamanashis, Muthukkumarasamy, Vallipuram, Chowdhury, Mohammad Jabed Morshed, Wu, Xin-Wen and Singh, Kalvinder. (2023). A multipath routing protocol for secure energy efficient communication in Wireless Sensor Networks. Computer Networks. 232, p. Article 109842. https://doi.org/10.1016/j.comnet.2023.109842
Introduction to blockchain technology with Bitcoin protocol
Pillai, Babu, Tharani, Jeyakumar Samantha, Hou, Zhe, Biswas, Kamanashis and Muthukkumarasamy, Vallipuram. (2023). Introduction to blockchain technology with Bitcoin protocol. In In Pal, Shantanu, Jadidi, Zahra, Foo, Ernest and Mukhopadhyay, Subhas C. (Ed.). Emerging smart technologies for critical infrastructure pp. 119-137 Springer. https://doi.org/10.1007/978-3-031-29845-5_6
Blockchain interoperability : Performance and security trade-offs
Pillai, Babu, Hóu, Zhé, Biswas, Kamanashis, Bui, Vinh and Muthukkumarasamy, Vallipuram. (2023). Blockchain interoperability : Performance and security trade-offs. 20th ACM Conference on Embedded Networked Sensor Systems (SenSys 2022). Boston, Massachusetts 06 - 09 Nov 2022 New York, New York: Association for Computing Machinery. pp. 1196-1201 https://doi.org/10.1145/3560905.3568176
Cross-blockchain technology : Integration framework and security assumptions
Pillai, Babu, Biswas, Kamanashis, Hóu, Zhé and Muthukkumarasamy, Vallipuram. (2022). Cross-blockchain technology : Integration framework and security assumptions. IEEE Access. 10, pp. 41239-41259. https://doi.org/10.1109/ACCESS.2022.3167172
A cross-layer trust-based consensus protocol for peer-to-peer energy trading using fuzzy logic
Chowdhury, Mohammad Jabed M., Usman, Muhammad, Ferdous, Md Sadek, Chowdhury, Niaz, Harun, Anam Ibna, Jannat, Umme Sumaya and Biswas, Kamanashis. (2022). A cross-layer trust-based consensus protocol for peer-to-peer energy trading using fuzzy logic. IEEE Internet of Things Journal. 9(16), pp. 14779-14789. https://doi.org/10.1109/JIOT.2021.3063710
A human-in-the-loop probabilistic CNN-fuzzy logic framework for accident prediction in vehicular networks
Usman, Muhammad, Carie, Anil, Marapelli, Bhaskar, Bedru, Hayat Dino and Biswas, Kamanashis. (2021). A human-in-the-loop probabilistic CNN-fuzzy logic framework for accident prediction in vehicular networks. IEEE Sensors Journal. 21(14), pp. 15496-15503. https://doi.org/10.1109/JSEN.2020.3023661
Burn-to-claim : An asset transfer protocol for blockchain interoperability
Pillai, Babu, Biswas, Kamanashis, Hóu, Zhé and Muthukkumarasamy, Vallipuram. (2021). Burn-to-claim : An asset transfer protocol for blockchain interoperability. Computer Networks. 200, p. Article 108495. https://doi.org/10.1016/j.comnet.2021.108495
Immutable autobiography of smart cars leveraging blockchain technology
Ferdous, M. D. Sadek, Chowdhury, Mohammad Jabed Morshed, Biswas, Kamanashis, Chowdhury, Niaz and Muthukkumarasamy, Vallipuram. (2020). Immutable autobiography of smart cars leveraging blockchain technology. Cambridge University Press. 35(e3), pp. 1-17. https://doi.org/10.1017/S0269888920000028
Software-defined application-specific traffic management for wireless body area networks
Hasan, Khalid, Ahmed, Khandakar, Biswas, Kamanashis, Saiful Islam, Md and Ameri Sianaki, Omid. (2020). Software-defined application-specific traffic management for wireless body area networks. Future Generation Computer Systems. 107, pp. 274-285. https://doi.org/10.1016/j.future.2020.01.052
A survey on blockchain-based platforms for IoT use-cases
Chowdhury, Mohammad, Jabed Morshed, Ferdous, Md Sadek, Biswas, Kamanashis, Chowdhury, Niaz and Muthukkumarasamy, Vallipuram. (2020). A survey on blockchain-based platforms for IoT use-cases. Knowledge Engineering Review. 35, p. Article: 19. https://doi.org/10.1017/S0269888920000284
The Burn-to-Claim cross-blockchain asset transfer protocol
Pillai, Babu, Biswas, Kamanashis, Hou, Zhe and Muthukkumarasamy, Vallipuram. (2020). The Burn-to-Claim cross-blockchain asset transfer protocol. 25th International Conference on Engineering of Complex Computer Systems (ICECCS). 28 - 31 Oct 2020 IEEE Xplore. pp. 119-124 https://doi.org/10.1109/ICECCS51672.2020.00021
Control plane optimisation for an SDN-Based WBAN framework to support healthcare applications
Hasan, Khalid, Ahmed, Khandakar, Biswas, Kamanashis, Islam, Md S., Kayes, A. S. M. and Islam, S. M. Riazul. (2020). Control plane optimisation for an SDN-Based WBAN framework to support healthcare applications. Sensors. 20(15), pp. 1-19. https://doi.org/10.3390/s20154200
COVID-19 contact tracing : Challenges and future directions
Chowdhury, M. J. M., Ferdous, M. S., Biswas, K., Chowdhury, N. and Muthukkumarasamy, V.. (2020). COVID-19 contact tracing : Challenges and future directions. IEEE Access. 8, pp. 225703-225729. https://doi.org/10.1109/ACCESS.2020.3036718
Cross-chain interoperability among blockchain-based systems using transactions
Pillai, Babu, Biswas, Kamanashis and Muthukkumarasamy, Vallipuram. (2020). Cross-chain interoperability among blockchain-based systems using transactions. Knowledge Engineering Review. 35(e23), pp. 1 - 17. https://doi.org/10.1017/S0269888920000314
A comprehensive review of wireless body area network
Hasan, Khalid, Biswas, Kamanashis, Ahmed, Khandakar, Nafi, Nazmus S. and Islam, Md Saiful. (2019). A comprehensive review of wireless body area network. Journal of Network and Computer Applications. 143, pp. 178-198. https://doi.org/10.1016/j.jnca.2019.06.016
A comparative analysis of distributed ledger technology platforms
Chowdhury, M. J. M., Ferdous, M. S., Biswas, K., Chowdhury, N., Kayes, A. S. M., Alazab, M. and Watters, P.. (2019). A comparative analysis of distributed ledger technology platforms. IEEE Access. 7, pp. 167930-167943. https://doi.org/10.1109/ACCESS.2019.2953729
A novel framework for software defined wireless body area network
Hasan, Khalid, Wu, Xin-Wen, Biswas, Kamanashis and Ahmed, Khandakar. (2019). A novel framework for software defined wireless body area network. 8th International Conference on Intelligent Systems, Modelling and Simulation (ISMS). Kuala Lumpur, Malaysia, Malaysia 08 May 2018 - 29 Apr 2019 IEEE Xplore. pp. 114-119 https://doi.org/10.1109/ISMS.2018.00031
Blockchain interoperable digital objects
Pillai, Babu, Biswas, Kamanashis and Muthukkumarasamy, Vallipuram. (2019). Blockchain interoperable digital objects. Blockchain – ICBC 2019. 25 - 30 Jun 2019 Springer Nature Switzerland AG. pp. 80-94 https://doi.org/10.1007/978-3-030-23404-1_6
Integrated platforms for blockchain enablement
Ferdous, Md Sadek, Biswas, Kamanashis, Chowdhury, Mohammad Jabed Morshed, Chowdhury, Niaz and Muthukkumarasamy, Vallipuram. (2019). Integrated platforms for blockchain enablement. In In Aggarwal, Shubhani, Kumar, Neeraj and Raj, Pethuru (Ed.). Role of blockchain technology in IoT applications pp. 41-72 Elsevier Inc.. https://doi.org/10.1016/bs.adcom.2019.01.001
Performance analysis of polling mechanism in WBAN
Hasan, Khalid, Ahmed, Khandakar and Biswas, Kamanashis. (2018). Performance analysis of polling mechanism in WBAN. 28th International Telecommunication Networks and Applications Conference (ITNAC). University of New South Wales Sydney, Australia 21 - 23 Nov 2018 IEEE Xplore. pp. 1-4 https://doi.org/10.1109/ATNAC.2018.8615356
Blockchain based wine supply chain traceability system
Biswas, Kamanashis, Muthukkumarasamy, Vallipuram and Tan, Wee Lum. (2017). Blockchain based wine supply chain traceability system. Future Technologies Conference (FTC) 2017. Vancouver, Canada 29 - 30 Nov 2017 United Kingdom: The Science and Information Organization. pp. 56-62
Securing smart cities using blockchain technology
Biswas, Kamanashis and Muthukkumarasamy, Vallipuram. (2016). Securing smart cities using blockchain technology. IEEE International Conference on High Performance Computing and Communications. United States of America: IEEE Xplore. pp. 1392 - 1393 https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0178
An interference aware heuristic routing protocol for wireless home automation networks
Biswas, Kamanashis, Muthukkumarasamy, Vallipuram, Wu, Xin-Wen and Singh, Kalvinder. (2015). An interference aware heuristic routing protocol for wireless home automation networks. Journal of Networks. 10(11), pp. 616 - 624. https://doi.org/10.4304/jnw.10.11.616-624
An encryption scheme using chaotic map and genetic operations for wireless sensor networks
Biswas, Kamanashis, Muthukkumarasamy, Vallipuram and Singh, Kalvinder. (2015). An encryption scheme using chaotic map and genetic operations for wireless sensor networks. IEEE Sensors Journal. 15(5), pp. 2801 - 2809. https://doi.org/10.1109/JSEN.2014.2380816
An analytical modeling for lifetime estimation of wireless sensor networks
Biswas, Kamanashis, Muthukkumarasamy, Vallipuram, Wu, Xin-Wen and Singh, Kalvinder. (2015). An analytical modeling for lifetime estimation of wireless sensor networks. IEEE Communications Letters. 19(9), pp. 1584 - 1587. https://doi.org/10.1109/LCOMM.2015.2453974