Investigation of enhanced oxidation stability of microencapsulated enzymatically produced tuna oil concentrates using complex coacervation

Journal article


Xia, Qiuyu, Akanbi, Taiwo O., Wang, Bo, Li, Rui, Liu, Shucheng and Barrow, Colin J.. (2020). Investigation of enhanced oxidation stability of microencapsulated enzymatically produced tuna oil concentrates using complex coacervation. Food and Function. 11(12), pp. 10748-10757. https://doi.org/10.1039/d0fo02350g
AuthorsXia, Qiuyu, Akanbi, Taiwo O., Wang, Bo, Li, Rui, Liu, Shucheng and Barrow, Colin J.
Abstract

Tuna oil was selectively hydrolysed using Thermomyces lanuginosus lipase for 6 h to prepare omega-3 acylglycerol concentrate with the DHA content significantly increased from 24.9% in tuna oil to 36.3% in the acylglycerol concentrate. The acylglycerol concentrate was subsequently encapsulated into the “multi-core” microcapsules using gelatin–sodium hexametaphosphate complex coacervates as the shell material. Rancimat, Oxipres and thermogravimetric analyses all showed that the microencapsulated acylglycerol concentrate had unexpectedly improved oxidation stability, compared to those produced using tuna oil, even though the concentrated oils themselves were significantly less stable than tuna oil. The incorporation of enzymatic tuna oil acylglycerol concentrate also significantly improved the oxidation stability of microencapsulated standard refined unconcentrated tuna oil. A wide range of characteristics including lipid and fatty acid composition, oil-in-water (O/W) emulsion properties, morphology, nanomechanical strength and physicochemical stability of acylglycerol, acylglycerol oil-in-water (O/W) emulsion and final microcapsules were investigated throughout the preparation. The result suggests that high levels of monoacylglycerol (about 35%) and diacylglycerol (about 8.5%) were produced in the acylglycerol. The acylglycerol O/W emulsion exhibited significantly smaller droplet size, lower zeta-potential and higher surface hydrophobicity, which contributed to the formation of the microcapsule with a significantly smoother surface and more compact structure, finally leading to improved oxidative stability compared to those prepared from native tuna oil.

Year2020
JournalFood and Function
Journal citation11 (12), pp. 10748-10757
PublisherRoyal Society of Chemistry
ISSN2042-6496
Digital Object Identifier (DOI)https://doi.org/10.1039/d0fo02350g
Scopus EID2-s2.0-85098454272
Research or scholarlyResearch
Page range10748-10757
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online05 Nov 2020
Publication process dates
Accepted04 Nov 2020
Deposited17 Nov 2021
Permalink -

https://acuresearchbank.acu.edu.au/item/8x137/investigation-of-enhanced-oxidation-stability-of-microencapsulated-enzymatically-produced-tuna-oil-concentrates-using-complex-coacervation

Restricted files

Publisher's version

  • 173
    total views
  • 0
    total downloads
  • 90
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Egg yolk powder-starch gel as novel ink for food 3D printing: Rheological properties, microstructure and application
Zhong, Yuanliang, Wang, Bo, Lv, Weiqiao, Li, Guohua, Lv, Yinqiao and Cheng, Yuting. (2024). Egg yolk powder-starch gel as novel ink for food 3D printing: Rheological properties, microstructure and application. Innovative Food Science and Emerging Technologies. 91, pp. 1-12. https://doi.org/10.1016/j.ifset.2023.103545
Spouting Technology in Energy-Carrying Electromagnetic Field Drying of Agricultural Products
Li, Guohua, Wang, Bo, Li, Mengge, Wu, Yiran, Lin, Rongru, Lv, Weiqiao and Li, Bingzheng. (2024). Spouting Technology in Energy-Carrying Electromagnetic Field Drying of Agricultural Products. Food Engineering Reviews. pp. 1-18. https://doi.org/10.1007/s12393-023-09364-0
Effect of xanthan gum on physicochemical properties and 3D printability of emulsion-filled starch gels
Cheng, Yuting, Wang, Bo, Lv, Weiqiao, Zhong, Yuanliang and Li, Guohua. (2024). Effect of xanthan gum on physicochemical properties and 3D printability of emulsion-filled starch gels. Food Hydrocolloids. 149, pp. 1-12. https://doi.org/10.1016/j.foodhyd.2023.109613
Bio-Nanoparticles Mediated Transesterification of Algal Biomass for Biodiesel Production
Verma, Madan L., Dhanya, B.S., Wang, Bo, Thakur, Meenu, Rani, Varsha and Kushwaha, Rekha. (2024). Bio-Nanoparticles Mediated Transesterification of Algal Biomass for Biodiesel Production. Sustainability. 16(1), pp. 295-295. https://doi.org/10.3390/su16010295
Effect of induction mode on 3D printing characteristics of whey protein isolate emulsion gel
Li, Guohua, Wang, Bo, Lv, Weiqiao, Mu, Rongyi and Zhong, Yuanliang. (2024). Effect of induction mode on 3D printing characteristics of whey protein isolate emulsion gel. Food Hydrocolloids. 146(Part A), p. Article 109255. https://doi.org/10.1016/j.foodhyd.2023.109255
Infrared heating of cereals
Yang, Shulin, Cao, Zhenui, Ying, Xin, Wei, Xiaoming, That, Lisa F.M. Lee Nen, Pandohee, Jessica and Wang, Bo. (2023). Infrared heating of cereals. In In Sharma, Rajan, Dar, B N and Sharma, Savita (Ed.). Cereal Processing Technologies Impact on Nutritional, Functional, and Biological Properties pp. 343 CRC Press. https://doi.org/10.1201/9781003242192-21
Investigating the effectiveness of coacervates produced from conjugated and unconjugated Spirulina protein in delivering unstable oil to the intestinal phase of digestion
Zhang, Zijia, Wang, Bo, Holden, Greg, Chen, Jie and Adhikari, Benu P.. (2023). Investigating the effectiveness of coacervates produced from conjugated and unconjugated Spirulina protein in delivering unstable oil to the intestinal phase of digestion. Food Bioscience. 56, pp. 1-11. https://doi.org/10.1016/j.fbio.2023.103198
Effect of enzymatically produced tuna oil acylglycerol on the characteristics of gelatin O/W emulsion during microencapsulation using complex coacervation
Xuan, Junyong, Xia, Qiuyu, Tu, Yinyi, Luo, Tingyu, Mao, Qingya, Han, Zongyuan, Barrow, Colin. J., Liu, Shucheng and Wang, Bo. (2023). Effect of enzymatically produced tuna oil acylglycerol on the characteristics of gelatin O/W emulsion during microencapsulation using complex coacervation. LWT. 190, pp. 1-10. https://doi.org/10.1016/j.lwt.2023.115580
Research progress and application of ultrasonic- and microwave-assisted food processing technology
Li, Mengge, Zhou, Cunshan, Wang, Bo, Zeng, Shiyu, Mu, Rongyi, Li, Guohua, Li, Bingzheng and Lv, Weiqiao. (2023). Research progress and application of ultrasonic- and microwave-assisted food processing technology. Comprehensive Reviews in Food Science and Food Safety. 22(5), pp. 3707-3731. https://doi.org/10.1111/1541-4337.13198
Improving functional properties of Spirulina protein by covalent conjugation followed by complex coacervation processes
Zhang, Zijia, Wang, Bo, Holden, Greg, Chen, Jie and Adhikari, Benu P.. (2023). Improving functional properties of Spirulina protein by covalent conjugation followed by complex coacervation processes. Future Foods. 7, p. Article 100239. https://doi.org/10.1016/j.fufo.2023.100239
Changes in water status and microstructure reveal the mechanisms by which tempering affects drying characteristics and quality attributes of medicinal chrysanthemums
Xu, Huihuang, Wu, Min, Wang, Bo, Wei, Wenguang, Zhang, Tong and Zheng, Zhian. (2023). Changes in water status and microstructure reveal the mechanisms by which tempering affects drying characteristics and quality attributes of medicinal chrysanthemums. Industrial Crops and Products. 205, p. Article 117463. https://doi.org/10.1016/j.indcrop.2023.117463
Study on high moisture extruded pea protein isolate based on acid-induced process : Physicochemical properties, conformational changes and fibrous structure mechanism
Sun, Dongyu, Zhang, Bowen, Zhou, Chengyi, Wang, Bo and Wu, Min. (2023). Study on high moisture extruded pea protein isolate based on acid-induced process : Physicochemical properties, conformational changes and fibrous structure mechanism. Food Hydrocolloids. 141, p. Article 108746. https://doi.org/10.1016/j.foodhyd.2023.108746
Microwave infrared vibrating bed drying of ginger : Drying qualities, microstructure and browning mechanism
Zeng, Shiyu, Wang, Bo, Zhao, Donglin and Lv, Weiqiao. (2023). Microwave infrared vibrating bed drying of ginger : Drying qualities, microstructure and browning mechanism. Food Chemistry. 424, p. Article 136340. https://doi.org/10.1016/j.foodchem.2023.136340
Effects of microwave power and hot air temperature on the physicochemical properties of dried ginger (Zingiber officinale) using microwave hot-air rolling drying
Zeng, Shiyu, Wang, Bo, Lv, Weiqiao and Wu, Yiran. (2023). Effects of microwave power and hot air temperature on the physicochemical properties of dried ginger (Zingiber officinale) using microwave hot-air rolling drying. Food Chemistry. 404, p. Article 134741. https://doi.org/10.1016/j.foodchem.2022.134741
Maillard reaction-based conjugation of Spirulina protein with maltodextrin using wet-heating route and characterisation of conjugates
Zhang, Zijia, Holden, Greg, Wang, Bo and Adhikari, Benu. (2023). Maillard reaction-based conjugation of Spirulina protein with maltodextrin using wet-heating route and characterisation of conjugates. Food Chemistry. 406, p. Article 134931. https://doi.org/10.1016/j.foodchem.2022.134931
Improvement of extrudability and self-support of emulsion-filled starch gel for 3D printing : Increasing oil content
Mu, Rongyi, Wang, Bo, Lv, Weiqiao, Yu, Jie and Li, Guohua. (2023). Improvement of extrudability and self-support of emulsion-filled starch gel for 3D printing : Increasing oil content. Carbohydrate Polymers. 301(Part A), p. Article 120293. https://doi.org/10.1016/j.carbpol.2022.120293
Dynamic analysis of moisture, dielectric property and microstructure of ginger slices during microwave hot-air flow rolling drying
Zeng, Shiyu, Wang, Bo, Lv, Weiqiao, Wang, Lijun and Lio, Xiaojun. (2022). Dynamic analysis of moisture, dielectric property and microstructure of ginger slices during microwave hot-air flow rolling drying. Food Control. 134, p. Article 108717. https://doi.org/10.1016/j.foodcont.2021.108717
Effect of drying method and wall material composition on the characteristics of camellia seed oil microcapsule powder
Song, Fei, Li, Yannan, Wang, Bo, Shen, Xiaojun, Wang, Hui, Li, Rui and Xia, Qiuyu. (2022). Effect of drying method and wall material composition on the characteristics of camellia seed oil microcapsule powder. Journal of the American Oil Chemists' Society. 99(4), pp. 353-364. https://doi.org/10.1002/aocs.12569
Development and applications of nanobiosensors for sustainable agricultural and food industries : Recent developments, challenges and perspectives
Thakur, Meenu, Wang, Bo and Verma, Madan L.. (2022). Development and applications of nanobiosensors for sustainable agricultural and food industries : Recent developments, challenges and perspectives. Environmental Technology and Innovation. 26, p. Article 102371. https://doi.org/10.1016/j.eti.2022.102371
Dairy encapsulation systems by atomization-based technology
Wang, Yong, Wang, Bo and Selomulya, Cordelia. (2022). Dairy encapsulation systems by atomization-based technology. In In Juliano, Pablo, Knoerzer, Kai, Sellahewa, Jay, Nguyen, Minh H. and Buckow, Roman (Ed.). Food engineering innovations across the food supply chain pp. 247-259 Academic Press. https://doi.org/10.1016/B978-0-12-821292-9.00023-6
Control of biofilm formation during food processing
Chandel, Heena, Wang, Bo and Verma, Madan L.. (2022). Control of biofilm formation during food processing. In In Roy, Dijendra N. (Ed.). A complete guidebook on biofilm study pp. 199-226 Academic Press. https://doi.org/10.1016/B978-0-323-88480-8.00007-8
Microbial lipases and their applications in the food industry
Chandel, Heena, Wang, Bo and Verma, Madan L.. (2022). Microbial lipases and their applications in the food industry. In Value-addition in food products and processing through enzyme technology pp. 381-394 Academic Press. https://doi.org/10.1016/B978-0-323-89929-1.00029-9
Maillard reaction between pea protein isolate and maltodextrin via wet-heating route for emulsion stabilisation
Zhang, Zijia, Wang, Bo and Adhikari, Benu. (2022). Maillard reaction between pea protein isolate and maltodextrin via wet-heating route for emulsion stabilisation. Future Foods. 6, p. Article 100193. https://doi.org/10.1016/j.fufo.2022.100193
Effect of ultrasound pretreatment on the drying kinetics and characteristics of pregelatinized kidney beans based on microwave-assisted drying
Li, Mengge, Wang, Bo, Lv, Weiqiao and Zhao, Donglin. (2022). Effect of ultrasound pretreatment on the drying kinetics and characteristics of pregelatinized kidney beans based on microwave-assisted drying. Food Chemistry. 397, p. Article 133806. https://doi.org/10.1016/j.foodchem.2022.133806
Application of blanching pretreatment in herbaceous peony (Paeonia lactiflora Pall.) flower processing : Improved drying efficiency, enriched volatile profile and increased phytochemical content
Xu, Huihuang, Wu, Min, Zhang, Xiuxin, Wang, Bo, Wang, Shunli, Zheng, Zhian, Li, Dong and Wang, Fang. (2022). Application of blanching pretreatment in herbaceous peony (Paeonia lactiflora Pall.) flower processing : Improved drying efficiency, enriched volatile profile and increased phytochemical content. Industrial Crops and Products. 188(Part A), p. Article 115663. https://doi.org/10.1016/j.indcrop.2022.115663
Transformation of high moisture extrusion on pea protein isolate in melting zone during : From the aspects of the rheological property, physicochemical attributes and modification mechanism
Sun, Dongyu, Wu, Min, Zhou, Chengyi and Wang, Bo. (2022). Transformation of high moisture extrusion on pea protein isolate in melting zone during : From the aspects of the rheological property, physicochemical attributes and modification mechanism. Food Hydrocolloids. 133, p. Article 108016. https://doi.org/10.1016/j.foodhyd.2022.108016
Integrated numerical simulation and quality attributes of soybean protein isolate extrusion under different screw speeds and combinations
Sun, Dongyu, Zhou, Chengyi, Yu, Haoze, Wang, Bo, Li, Yang and Wu, Min. (2022). Integrated numerical simulation and quality attributes of soybean protein isolate extrusion under different screw speeds and combinations. Innovative Food Science and Emerging Technologies. 79, p. Article 103053. https://doi.org/10.1016/j.ifset.2022.103053
Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique
Li, Mengge, Wang, Bo, Lv, Weiqiao, Lin, Rongru and Zhao, Donglin. (2022). Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique. LWT - Food Science and Technology. 154, p. Article 112673. https://doi.org/10.1016/j.lwt.2021.112673
Food proteins as biomaterial for delivery functions
Okago, Ogadimma, Wang, Bo and Udenigwe, Chibuike. (2021). Food proteins as biomaterial for delivery functions. In In Udenigwe, Chibuike C. (Ed.). Food proteins and peptides : Emerging biofunctions, food and biomaterial applications pp. 97-126 Royal Society of Chemistry. https://doi.org/10.1039/9781839163425-00097
Protein encapsulation of nutritional and pharmaceutical compositions
Elliott, Glenn, Ryan, Jessica, Urban-Alandete Lourdes, Wang, B. and Xu, YunYun. (2021). Protein encapsulation of nutritional and pharmaceutical compositions PCT/AU2020/051120
Advances in technologies used in the detection of food adulteration
Chen, Wenbo, Li, Hui, Wang, Yong, De Silva, Pre, Adhikari, Benu P. and Wang, Bo. (2021). Advances in technologies used in the detection of food adulteration. In In Verma, Madan L. (Ed.). Biotechnological approaches in food adulterants pp. 49-78 CRC Press. https://doi.org/10.1201/9780429354557-3
Manufacturing of plant-based bioactive peptides using enzymatic methods to meet health and sustainability targets of the sustainable development goals
Ying, Xin, Agyei, Dominic, Udenigwe, Chibuike, Adhikari, Benu and Wang, Bo. (2021). Manufacturing of plant-based bioactive peptides using enzymatic methods to meet health and sustainability targets of the sustainable development goals. Frontiers in Sustainable Food Systems. 5, p. Article 769028. https://doi.org/10.3389/fsufs.2021.769028
Overview of food adulteration from the biotechnological perspective
Li, Hui, Chen, Wenbo, Wang, Yong, Adhikari, Benu and Wang, Bo. (2020). Overview of food adulteration from the biotechnological perspective. In In Verma, Madan L. (Ed.). Biotechnological approaches in food adulterants pp. 1-25 CRC Press. https://doi.org/10.1201/9780429354557-1
Protein encapsulation of nutritional and pharmaceutical compositions
Urban-Alandete, Lourdes, Elliott, Glenn, Cheng, Mek, Wang, B. and Ryan, Jessica. (2020). Protein encapsulation of nutritional and pharmaceutical compositions WO/2020/019019
Protein-based nanodelivery systems for food applications [Reference Work]
Okago, Ogadimma D., Wang, Bo, Acquah, Caleb and Udenigwe, Chibuike C.. (2019). Protein-based nanodelivery systems for food applications [Reference Work] Amsterdam, Netherlands: Elsevier Inc.. https://doi.org/10.1016/B978-0-08-100596-5.21864-7
Coacervation technique as an encapsulation and delivery tool for hydrophobic biofunctional compounds
Wang, Bo, Akanbi, Taiwo O., Agyei, Dominic, Holland, Brendan J. and Barrow, Colin. J.. (2018). Coacervation technique as an encapsulation and delivery tool for hydrophobic biofunctional compounds. In In Grumezescu, Alexandru Mihai and Holban, Alina Maria (Ed.). Role of materials science in food bioengineering pp. 235-261 Academic Press. https://doi.org/10.1016/B978-0-12-811448-3.00007-3
Encapsulated nutritional and pharmaceutical compositions
Wang, B., CHENG, Mek Chu Ting and ELLIOTT, Glenn. (2018). Encapsulated nutritional and pharmaceutical compositions 11201909228V
Methods of manufacturing nutritional formulations
Wang, B., Elliott, Glenn, Cheng, Mek Chu Ting, Patch, Craig Stewart and Mossel, Brenda Louise. (2017). Methods of manufacturing nutritional formulations PCT/AU2017/050339
Microencapsulated omega-3 polyunsaturated fatty acid glyceride compositions and processes for preparing same
Barrow, Colin J., Wang, B. and Akanbu, Taiwo. (2017). Microencapsulated omega-3 polyunsaturated fatty acid glyceride compositions and processes for preparing same PCT/AU2017/050454