Improvement of extrudability and self-support of emulsion-filled starch gel for 3D printing : Increasing oil content

Journal article


Mu, Rongyi, Wang, Bo, Lv, Weiqiao, Yu, Jie and Li, Guohua. (2023). Improvement of extrudability and self-support of emulsion-filled starch gel for 3D printing : Increasing oil content. Carbohydrate Polymers. 301(Part A), p. Article 120293. https://doi.org/10.1016/j.carbpol.2022.120293
AuthorsMu, Rongyi, Wang, Bo, Lv, Weiqiao, Yu, Jie and Li, Guohua
Abstract

This work investigated the mechanism of increasing oil content in synchronously enhancing extrudability and self-support of β-carotene loaded starch-based emulsion-filled gels (S-EFG) during 3D printing in terms of gel properties. Increasing emulsion oil content enhanced the storage modulus, relaxation modulus, and hardness of gels, which indicated sodium caseinate-stabilized emulsions were active fillers in the starch gel. Thus, printed products with high oil content were less prone to collapse when selecting models with higher height. In addition, lower yield stress, relaxation time, and higher frequency dependence were observed in S-EFG with higher oil content (30–50 %) due to the lubricating/plasticizing effect of oils, which corresponded to the smoother extruded filament. Furthermore, the retention of β-carotene in high oil content gel was higher after heat treatment due to denser microstructure. These results indicated that the extrudability and self-supporting of S-EFG were simultaneously improved by increasing oil content under the active filling effect and lubricating/plasticizing effect of emulsions.

Keywords3D printing; emulsion-filled gel; starch; rheological properties; extrudability; self-support
Year2023
JournalCarbohydrate Polymers
Journal citation301 (Part A), p. Article 120293
PublisherElsevier Ltd
ISSN0144-8617
Digital Object Identifier (DOI)https://doi.org/10.1016/j.carbpol.2022.120293
PubMed ID36436851
Scopus EID2-s2.0-85141753072
Page range1-11
FunderChina Agricultural University
National Natural Science Foundation of China (NSFC)
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online05 Nov 2022
Publication process dates
Accepted29 Oct 2022
Deposited02 Mar 2023
Grant ID2021TC105
31901823
Permalink -

https://acuresearchbank.acu.edu.au/item/8yw4v/improvement-of-extrudability-and-self-support-of-emulsion-filled-starch-gel-for-3d-printing-increasing-oil-content

Restricted files

Publisher's version

  • 14
    total views
  • 0
    total downloads
  • 14
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Effects of microwave power and hot air temperature on the physicochemical properties of dried ginger (Zingiber officinale) using microwave hot-air rolling drying
Zeng, Shiyu, Wang, Bo, Lv, Weiqiao and Wu, Yiran. (2023). Effects of microwave power and hot air temperature on the physicochemical properties of dried ginger (Zingiber officinale) using microwave hot-air rolling drying. Food Chemistry. 404, p. Article 134741. https://doi.org/10.1016/j.foodchem.2022.134741
Maillard reaction-based conjugation of Spirulina protein with maltodextrin using wet-heating route and characterisation of conjugates
Zhang, Zijia, Holden, Greg, Wang, Bo and Adhikari, Benu. (2023). Maillard reaction-based conjugation of Spirulina protein with maltodextrin using wet-heating route and characterisation of conjugates. Food Chemistry. 406, p. Article 134931. https://doi.org/10.1016/j.foodchem.2022.134931
Effect of ultrasound pretreatment on the drying kinetics and characteristics of pregelatinized kidney beans based on microwave-assisted drying
Li, Mengge, Wang, Bo, Lv, Weiqiao and Zhao, Donglin. (2022). Effect of ultrasound pretreatment on the drying kinetics and characteristics of pregelatinized kidney beans based on microwave-assisted drying. Food Chemistry. 397, p. Article 133806. https://doi.org/10.1016/j.foodchem.2022.133806
Application of blanching pretreatment in herbaceous peony (Paeonia lactiflora Pall.) flower processing : Improved drying efficiency, enriched volatile profile and increased phytochemical content
Xu, Huihuang, Wu, Min, Zhang, Xiuxin, Wang, Bo, Wang, Shunli, Zheng, Zhian, Li, Dong and Wang, Fang. (2022). Application of blanching pretreatment in herbaceous peony (Paeonia lactiflora Pall.) flower processing : Improved drying efficiency, enriched volatile profile and increased phytochemical content. Industrial Crops and Products. 188(Part A), p. Article 115663. https://doi.org/10.1016/j.indcrop.2022.115663
Transformation of high moisture extrusion on pea protein isolate in melting zone during : From the aspects of the rheological property, physicochemical attributes and modification mechanism
Sun, Dongyu, Wu, Min, Zhou, Chengyi and Wang, Bo. (2022). Transformation of high moisture extrusion on pea protein isolate in melting zone during : From the aspects of the rheological property, physicochemical attributes and modification mechanism. Food Hydrocolloids. 133, p. Article 108016. https://doi.org/10.1016/j.foodhyd.2022.108016
Integrated numerical simulation and quality attributes of soybean protein isolate extrusion under different screw speeds and combinations
Sun, Dongyu, Zhou, Chengyi, Yu, Haoze, Wang, Bo, Li, Yang and Wu, Min. (2022). Integrated numerical simulation and quality attributes of soybean protein isolate extrusion under different screw speeds and combinations. Innovative Food Science and Emerging Technologies. 79, p. Article 103053. https://doi.org/10.1016/j.ifset.2022.103053
Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique
Li, Mengge, Wang, Bo, Lv, Weiqiao, Lin, Rongru and Zhao, Donglin. (2022). Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique. LWT - Food Science and Technology. 154, p. Article 112673. https://doi.org/10.1016/j.lwt.2021.112673
Advances in technologies used in the detection of food adulteration
Chen, Wenbo, Li, Hui, Wang, Yong, De Silva, Pre, Adhikari, Benu P. and Wang, Bo. (2021). Advances in technologies used in the detection of food adulteration. In In Verma, Madan L. (Ed.). Biotechnological approaches in food adulterants pp. 49-78 CRC Press. https://doi.org/10.1201/9780429354557-3
Manufacturing of plant-based bioactive peptides using enzymatic methods to meet health and sustainability targets of the sustainable development goals
Ying, Xin, Agyei, Dominic, Udenigwe, Chibuike, Adhikari, Benu and Wang, Bo. (2021). Manufacturing of plant-based bioactive peptides using enzymatic methods to meet health and sustainability targets of the sustainable development goals. Frontiers in Sustainable Food Systems. 5, p. Article 769028. https://doi.org/10.3389/fsufs.2021.769028
Investigation of enhanced oxidation stability of microencapsulated enzymatically produced tuna oil concentrates using complex coacervation
Xia, Qiuyu, Akanbi, Taiwo O., Wang, Bo, Li, Rui, Liu, Shucheng and Barrow, Colin J.. (2020). Investigation of enhanced oxidation stability of microencapsulated enzymatically produced tuna oil concentrates using complex coacervation. Food and Function. 11(12), pp. 10748-10757. https://doi.org/10.1039/d0fo02350g