MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle‑aged men

Journal article


Pham, Toan, MacRae, Caitlin L., Broome, Sophie C., D'Souza, Randall F., Narang, Ravi, Wang, Hsiang W., Mori, Trevor A., Hickey, Anthony J. R., Mitchell, Cameron J. and Merry, Troy L.. (2020). MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle‑aged men. European Journal of Applied Physiology. 120, pp. 1657-1669. https://doi.org/10.1007/s00421-020-04396-4
AuthorsPham, Toan, MacRae, Caitlin L., Broome, Sophie C., D'Souza, Randall F., Narang, Ravi, Wang, Hsiang W., Mori, Trevor A., Hickey, Anthony J. R., Mitchell, Cameron J. and Merry, Troy L.
Abstract

Purpose
Excess production of reactive oxygen species (ROS) from the mitochondria can promote mitochondrial dysfunction and has been implicated in the development of a range of chronic diseases. As such there is interest in whether mitochondrial-targeted antioxidant supplementation can attenuate mitochondrial-associated oxidative stress. We investigated the effect of MitoQ and CoQ10 supplementation on oxidative stress and skeletal muscle mitochondrial ROS levels and function in healthy middle-aged men.

Methods
Skeletal muscle and blood samples were collected from twenty men (50 ± 1 y) before and following six weeks of daily supplementation with MitoQ (20 mg) or CoQ10 (200 mg). High-resolution respirometry was used to determine mitochondrial respiration and H2O2 levels, markers of mitochondrial mass and antioxidant defences were measured in muscle samples and oxidative stress markers in urine and blood samples.

Results
Both MitoQ and CoQ10 supplementation suppressed mitochondrial net H2O2 levels during leak respiration, while MitoQ also elevated muscle catalase expression. However, neither supplement altered urine F2-isoprostanes nor plasma TBARS levels. Neither MitoQ nor CoQ10 supplementation had a significant impact on mitochondrial respiration or mitochondrial density markers (citrate synthase, mtDNA/nDNA, PPARGC1A, OXPHOS expression).

Conclusion
Our results suggest that neither MitoQ and CoQ10 supplements impact mitochondrial function, but both can mildly suppress mitochondrial ROS levels in healthy middle-aged men, with some indication that MitoQ may be more effective than CoQ10.

KeywordsROS; oxidative stress; muscle; mitochondria; antioxidant
Year2020
JournalEuropean Journal of Applied Physiology
Journal citation120, pp. 1657-1669
PublisherSpringer
ISSN1439-6319
Digital Object Identifier (DOI)https://doi.org/10.1007/s00421-020-04396-4
Scopus EID2-s2.0-85085482886
Page range1657-1669
FunderMitoQ
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online26 May 2020
Publication process dates
Accepted16 May 2020
Deposited17 Jan 2023
Permalink -

https://acuresearchbank.acu.edu.au/item/8y99z/mitoq-and-coq10-supplementation-mildly-suppresses-skeletal-muscle-mitochondrial-hydrogen-peroxide-levels-without-impacting-mitochondrial-function-in-middle-aged-men

Restricted files

Publisher's version

  • 84
    total views
  • 0
    total downloads
  • 5
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

A role for β-catenin in diet-induced skeletal muscle insulin resistance
Mason, Stewart W. C., Dissanayake, Waruni C., Broome, Sophie C., Hedges, Christopher P., Peters, Wouter M., Gram, Martin, Rowlands, David S., Shepherd, Peter R. and Merry, Troy L.. (2023). A role for β-catenin in diet-induced skeletal muscle insulin resistance. Physiological Reports. 11(4), p. Article e15536. https://doi.org/10.14814/phy2.15536
Mitochondria-targeted antioxidant supplementation does not affect muscle soreness or recovery of maximal voluntary isometric contraction force following muscle-damaging exercise in untrained men : A randomized clinical trial
Broome, S. C., Atiola, R. D., Braakhuis, A. J., Mitchell, C. J. and Merry, T. L.. (2022). Mitochondria-targeted antioxidant supplementation does not affect muscle soreness or recovery of maximal voluntary isometric contraction force following muscle-damaging exercise in untrained men : A randomized clinical trial. Applied Physiology, Nutrition and Metabolism. 47(7), pp. 762-774. https://doi.org/10.1139/apnm-2021-0767
MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men
Broome, S. C., Pham, T., Braakhuis, A. J., Narang, R., Wang, H. W., Hickey, A. J. R., Mitchell, C. J. and Merry, T. L.. (2022). MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men. Redox Biology. 53, p. Article 102341. https://doi.org/10.1016/j.redox.2022.102341
Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance
Xirouchaki, Chrysovalantou E., Jia, Yaoyao, McGrath, Meagan J., Greatorex, Spencer, Tran, Melanie, Merry, Troy L., Hong, Dawn, Eramo, Matthew J., Broome, Sophie C., Woodhead, Jonathan S. T., D'souza, Randall F., Gallagher, Jenny, Salimova, Ekaterina, Huang, Cheng, Schittenhelm, Ralf B., Sadoshima, Junichi, Watt, Matthew J., Mitchell, Christina A. and Tiganis, Tony. (2021). Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance. Science Advances. 7(51), p. Article eabl4988. https://doi.org/10.1126/sciadv.abl4988
β-Catenin is required for optimal exercise- andcontraction-stimulated skeletal muscle glucose uptake
Masson, Stewart W. C., Woodhead, Jonathan S. T., D'Souza, Randall F., Broome, Sophie C., MacRae, Caitlin, Cho, Hyun C., Atiola, Robert D., Futi, Tumani, Dent, Jessica R., Shepherd, Peter R. and Merry, Troy L.. (2021). β-Catenin is required for optimal exercise- andcontraction-stimulated skeletal muscle glucose uptake. Journal of Physiology. 599(16), pp. 3897-3912. https://doi.org/10.1113/JP281352
Pre-exercise carbohydrate or protein ingestion influences substrate oxidation but not performance or hunger compared with cycling in the fasted state
Rothschild, Jeffrey A., Kilding, Andrew E., Broome, Sophie C., Stewart, Tom, Cronin, John B. and Plews, Daniel J.. (2021). Pre-exercise carbohydrate or protein ingestion influences substrate oxidation but not performance or hunger compared with cycling in the fasted state. Nutrients. 13(4), p. Article 1291. https://doi.org/10.3390/nu13041291
Mitochondria-targeted antioxidantsupplementation improves 8 km time trialperformance in middle-aged trained male cyclists
Broome, S. C., Braakhuis, A. J., Mitchell, C. J. and Merry, T. L.. (2021). Mitochondria-targeted antioxidantsupplementation improves 8 km time trialperformance in middle-aged trained male cyclists. Journal of the International Society of Sports Nutrition. 18(1), p. Article 58. https://doi.org/10.1186/s12970-021-00454-0
Mitochondria-targeted antioxidants and skeletal muscle function
Broome, Sophie, Woodhead, Jonathan and Merry, Troy. (2018). Mitochondria-targeted antioxidants and skeletal muscle function. Antioxidants. 7(8), p. Article 107. https://doi.org/10.3390/antiox7080107