Sophie Broome
Contact category | Researcher |
---|---|
Job title | Postdoctoral Research Fellow |
Research institute | Mary MacKillop Institute for Health Research |
Faculty of Health Sciences |
Research outputs
A role for β-catenin in diet-induced skeletal muscle insulin resistance
Mason, Stewart W. C., Dissanayake, Waruni C., Broome, Sophie C., Hedges, Christopher P., Peters, Wouter M., Gram, Martin, Rowlands, David S., Shepherd, Peter R. and Merry, Troy L.. (2023). A role for β-catenin in diet-induced skeletal muscle insulin resistance. Physiological Reports. 11(4), p. Article e15536. https://doi.org/10.14814/phy2.15536Journal article
Mitochondria-targeted antioxidant supplementation does not affect muscle soreness or recovery of maximal voluntary isometric contraction force following muscle-damaging exercise in untrained men : A randomized clinical trial
Broome, S. C., Atiola, R. D., Braakhuis, A. J., Mitchell, C. J. and Merry, T. L.. (2022). Mitochondria-targeted antioxidant supplementation does not affect muscle soreness or recovery of maximal voluntary isometric contraction force following muscle-damaging exercise in untrained men : A randomized clinical trial. Applied Physiology, Nutrition and Metabolism. 47(7), pp. 762-774. https://doi.org/10.1139/apnm-2021-0767Journal article
MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men
Broome, S. C., Pham, T., Braakhuis, A. J., Narang, R., Wang, H. W., Hickey, A. J. R., Mitchell, C. J. and Merry, T. L.. (2022). MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men. Redox Biology. 53, p. Article 102341. https://doi.org/10.1016/j.redox.2022.102341Journal article
Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance
Xirouchaki, Chrysovalantou E., Jia, Yaoyao, McGrath, Meagan J., Greatorex, Spencer, Tran, Melanie, Merry, Troy L., Hong, Dawn, Eramo, Matthew J., Broome, Sophie C., Woodhead, Jonathan S. T., D'souza, Randall F., Gallagher, Jenny, Salimova, Ekaterina, Huang, Cheng, Schittenhelm, Ralf B., Sadoshima, Junichi, Watt, Matthew J., Mitchell, Christina A. and Tiganis, Tony. (2021). Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance. Science Advances. 7(51), p. Article eabl4988. https://doi.org/10.1126/sciadv.abl4988Journal article
Mitochondria-targeted antioxidantsupplementation improves 8 km time trialperformance in middle-aged trained male cyclists
Broome, S. C., Braakhuis, A. J., Mitchell, C. J. and Merry, T. L.. (2021). Mitochondria-targeted antioxidantsupplementation improves 8 km time trialperformance in middle-aged trained male cyclists. Journal of the International Society of Sports Nutrition. 18(1), p. Article 58. https://doi.org/10.1186/s12970-021-00454-0Journal article
β-Catenin is required for optimal exercise- andcontraction-stimulated skeletal muscle glucose uptake
Masson, Stewart W. C., Woodhead, Jonathan S. T., D'Souza, Randall F., Broome, Sophie C., MacRae, Caitlin, Cho, Hyun C., Atiola, Robert D., Futi, Tumani, Dent, Jessica R., Shepherd, Peter R. and Merry, Troy L.. (2021). β-Catenin is required for optimal exercise- andcontraction-stimulated skeletal muscle glucose uptake. Journal of Physiology. 599(16), pp. 3897-3912. https://doi.org/10.1113/JP281352Journal article
Pre-exercise carbohydrate or protein ingestion influences substrate oxidation but not performance or hunger compared with cycling in the fasted state
Rothschild, Jeffrey A., Kilding, Andrew E., Broome, Sophie C., Stewart, Tom, Cronin, John B. and Plews, Daniel J.. (2021). Pre-exercise carbohydrate or protein ingestion influences substrate oxidation but not performance or hunger compared with cycling in the fasted state. Nutrients. 13(4), p. Article 1291. https://doi.org/10.3390/nu13041291Journal article
MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle‑aged men
Pham, Toan, MacRae, Caitlin L., Broome, Sophie C., D'Souza, Randall F., Narang, Ravi, Wang, Hsiang W., Mori, Trevor A., Hickey, Anthony J. R., Mitchell, Cameron J. and Merry, Troy L.. (2020). MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle‑aged men. European Journal of Applied Physiology. 120, pp. 1657-1669. https://doi.org/10.1007/s00421-020-04396-4Journal article
Mitochondria-targeted antioxidants and skeletal muscle function
Broome, Sophie, Woodhead, Jonathan and Merry, Troy. (2018). Mitochondria-targeted antioxidants and skeletal muscle function. Antioxidants. 7(8), p. Article 107. https://doi.org/10.3390/antiox7080107Journal article
499
total views of outputs201
total downloads of outputs6
views of outputs this month4
downloads of outputs this month