An FSV analysis approach to verify the robustness of the triple-correlation analysis theoretical framework

Journal article


Wu, Robert M. X., Zhang, Zhongwu, Zhang, Huan, Wang, Yongwen, Shafiabady, Niusha, Yan, Wanjun, Gou, Jinwen, Gide, Ergun and Zhang, Siqing. (2023). An FSV analysis approach to verify the robustness of the triple-correlation analysis theoretical framework. Scientific Reports. 13(1), p. Article 9621. https://doi.org/10.1038/s41598-023-35900-3
AuthorsWu, Robert M. X., Zhang, Zhongwu, Zhang, Huan, Wang, Yongwen, Shafiabady, Niusha, Yan, Wanjun, Gou, Jinwen, Gide, Ergun and Zhang, Siqing
Abstract

Among all the gas disasters, gas concentration exceeding the threshold limit value (TLV) has been the leading cause of accidents. However, most systems still focus on exploring the methods and framework for avoiding reaching or exceeding TLV of the gas concentration from viewpoints of impacts on geological conditions and coal mining working-face elements. The previous study developed a Trip-Correlation Analysis Theoretical Framework and found strong correlations between gas and gas, gas and temperature, and gas and wind in the gas monitoring system. However, this framework's effectiveness must be examined to determine whether it might be adopted in other coal mine cases. This research aims to explore a proposed verification analysis approach—First-round—Second-round—Verification round (FSV) analysis approach to verify the robustness of the Trip-Correlation Analysis Theoretical Framework for developing a gas warning system. A mixed qualitative and quantitative research methodology is adopted, including a case study and correlational research. The results verify the robustness of the Triple-Correlation Analysis Theoretical Framework. The outcomes imply that this framework is potentially valuable for developing other warning systems. The proposed FSV approach can also be used to explore data patterns insightfully and offer new perspectives to develop warning systems for different industry applications.

Year2023
JournalScientific Reports
Journal citation13 (1), p. Article 9621
PublisherNature Publishing Group
ISSN2045-2322
Digital Object Identifier (DOI)https://doi.org/10.1038/s41598-023-35900-3
PubMed ID37316559
Scopus EID2-s2.0-85161954329
PubMed Central IDPMC10267157
Open accessPublished as ‘gold’ (paid) open access
Page range1-20
FunderShanxi Provincial Education Science
Shanxi Coking Coal Project
Shanxi Social Science Federation
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online14 Jun 2023
Publication process dates
Accepted25 May 2023
Deposited17 Feb 2025
Additional information

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Permalink -

https://acuresearchbank.acu.edu.au/item/91539/an-fsv-analysis-approach-to-verify-the-robustness-of-the-triple-correlation-analysis-theoretical-framework

Download files


Publisher's version
OA_Wu_2023_An_FSV_analysis_approach_to_verify.pdf
License: CC BY 4.0
File access level: Open

  • 4
    total views
  • 0
    total downloads
  • 4
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Efficient energy utilization in smart grids an artificial intelligence perspective
Qadir, Zakria, Khan, Yasir Ali, Rana, Muhammad Tausif Afzal, Din, Fareed Ud and Shafiabady, Niusha. (2025). Efficient energy utilization in smart grids an artificial intelligence perspective. In In Bhatia, Tarandeep Kaur, El Hajjami, Salma, Kaushik, Keshav, Diallo, Gayo, Ouaissa, Mariya and Khan, Inam Ullah (Ed.). Ethical artificial intelligence in power electronics pp. 133-147 CRC Press. https://doi.org/10.1201/9781032648323-9
eXplainable Artificial Intelligence (XAI) for improving organisational regility
Shafiabady, Niusha, Hadjinicolaou, Nick, Hettikankanamage, Nadeesha, MohammadiSavadkoohi, Ehsan, Wu, Robert M. X. and Vakilian, James. (2024). eXplainable Artificial Intelligence (XAI) for improving organisational regility. PLoS ONE. 19(4), p. Article e0301429. https://doi.org/10.1371/journal.pone.0301429
Real-time structural health monitoring of bridges using convolutional neural network-based loss factor analysis for enhanced energy dissipation detection
Nguyen, Thanh Q., Vu, Tu B., Shafiabady, Niusha, Nguyen, Thuy T. and Nguyen, Phuoc T.. (2024). Real-time structural health monitoring of bridges using convolutional neural network-based loss factor analysis for enhanced energy dissipation detection. Structures. 70, p. Article 107733. https://doi.org/10.1016/j.istruc.2024.107733
Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems
Wu, Robert M.X., Shafiabady, Niusha, Zhang, Huan, Lu, Haiyan, Gide, Ergun, Liu, Jinrong and Charbonnier, Clement Franck Benoit. (2024). Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems. Scientific Reports. 14(1), pp. 1-18. https://doi.org/10.1038/s41598-024-67283-4
Using Artificial Intelligence (AI) to predict organizational agility
Shafiabady, Niusha, Hadjinicolaou, Nick, Din, Fareed Ud, Bhandari, Binayak, Wu, Robert M. X. and Vakilian, James. (2023). Using Artificial Intelligence (AI) to predict organizational agility. PLoS ONE. 18(5), p. Article e0283066. https://doi.org/10.1371/journal.pone.0283066
Using multi-focus group method as an effective tool for eliciting business system requirements : Verified by a case study
Wu, Robert M. X., Wang, Yongwen, Shafiabady, Niusha, Zhang, Huan, Yan, Wanjun, Gou, Jinwen, Shi, Yong, Liu, Bao, Gide, Ergun, Kang, Changlong, Zhang, Zhongwu, Shen, Bo, Li, Xiaoquan, Fan, Jianfeng, He, Xiangqian, Soar, Jeffrey, Zhao, Haijun, Sun, Lei, Huo, Wenying and Wang, Ya. (2023). Using multi-focus group method as an effective tool for eliciting business system requirements : Verified by a case study. PLoS ONE. 18(3), p. Article e0281603. https://doi.org/10.1371/journal.pone.0281603
Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms
Zaidi, Syed Fawad M., Shafiabady, Niusha and Beilby, Justin. (2023). Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms. Virtual Reality. 27(4), pp. 3613-3620. https://doi.org/10.1007/s10055-023-00813-z
V-CarE—A conceptual conceptual design model for providing COVID-19 pandemic awareness : Proposal for a virtual reality design approach to facilitate people with persistent postural-perceptual dizziness
Zaidi, Syed Fawad M., Shafiabady, Niusha, Afifi, Shereen and Beilby, Justin. (2023). V-CarE—A conceptual conceptual design model for providing COVID-19 pandemic awareness : Proposal for a virtual reality design approach to facilitate people with persistent postural-perceptual dizziness. JMIR Research Protocols. 12, p. Article e38369. https://doi.org/10.2196/38369
Implementation of transformer-based deep learning architecture for the development of surface roughness classifier using sound and cutting force signals
Bhandari, Binayak, Park, Gijun and Shafiabady, Niusha. (2023). Implementation of transformer-based deep learning architecture for the development of surface roughness classifier using sound and cutting force signals. Neural Computing and Applications. 35(18), pp. 13275-13292. https://doi.org/10.1007/s00521-023-08425-z
Evolving Hybrid partial genetic algorithm classification model for cost-effective frailty screening : Investigative study
Oates, John, Shafiabady, Niusha, Ambagtsheer, Rachel, Beilby, Justin, Seiboth, Chris and Dent, Elsa. (2022). Evolving Hybrid partial genetic algorithm classification model for cost-effective frailty screening : Investigative study. JMIR Aging. 5(4), p. Article e38464. https://doi.org/10.2196/38464
The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set
Ambagtsheer, R. C., Shafiabady, N., Dent, E., Seiboth, C. and Beilby, J.. (2020). The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set. International Journal of Medical Informatics. 136, p. Article 104094. https://doi.org/10.1016/j.ijmedinf.2020.104094
ST (Shafiabady-Teshnehlab) optimization algorithm
Shafiabady, Niusha. (2018). ST (Shafiabady-Teshnehlab) optimization algorithm. In In Tan, Ying (Ed.). Swarm intelligence : Volume 2 : Innovation, new algorithms and methods pp. 83-110 The Institution of Engineering and Technology. https://doi.org/10.1049/pbce119g_ch4
Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents
Motlagh, Farid, Ibrahim, Fatimah, Rashid, Rusdi, Shafiabady, Niusha, Seghatoleslam, Tahereh and Habil, Hussain. (2018). Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents. Psychopharmacology. 235(11), pp. 3273-3288. https://doi.org/10.1007/s00213-018-5035-0