Using multi-focus group method as an effective tool for eliciting business system requirements : Verified by a case study

Journal article


Wu, Robert M. X., Wang, Yongwen, Shafiabady, Niusha, Zhang, Huan, Yan, Wanjun, Gou, Jinwen, Shi, Yong, Liu, Bao, Gide, Ergun, Kang, Changlong, Zhang, Zhongwu, Shen, Bo, Li, Xiaoquan, Fan, Jianfeng, He, Xiangqian, Soar, Jeffrey, Zhao, Haijun, Sun, Lei, Huo, Wenying and Wang, Ya. (2023). Using multi-focus group method as an effective tool for eliciting business system requirements : Verified by a case study. PLoS ONE. 18(3), p. Article e0281603. https://doi.org/10.1371/journal.pone.0281603
AuthorsWu, Robert M. X., Wang, Yongwen, Shafiabady, Niusha, Zhang, Huan, Yan, Wanjun, Gou, Jinwen, Shi, Yong, Liu, Bao, Gide, Ergun, Kang, Changlong, Zhang, Zhongwu, Shen, Bo, Li, Xiaoquan, Fan, Jianfeng, He, Xiangqian, Soar, Jeffrey, Zhao, Haijun, Sun, Lei, Huo, Wenying and Wang, Ya
Abstract

This research aims to explore the multi-focus group method as an effective tool for systematically eliciting business requirements for business information system (BIS) projects. During the COVID-19 crisis, many businesses plan to transform their businesses into digital businesses. Business managers face a critical challenge: they do not know much about detailed system requirements and what they want for digital transformation requirements. Among many approaches used for understanding business requirements, the focus group method has been used to help elicit BIS needs over the past 30 years. However, most focus group studies about research practices mainly focus on a particular disciplinary field, such as social, biomedical, and health research. Limited research reported using the multi-focus group method to elicit business system requirements. There is a need to fill this research gap. A case study is conducted to verify that the multi-focus group method might effectively explore detailed system requirements to cover the Case Study business’s needs from transforming the existing systems into a visual warning system. The research outcomes verify that the multi-focus group method might effectively explore the detailed system requirements to cover the business’s needs. This research identifies that the multi-focus group method is especially suitable for investigating less well-studied, no previous evidence, or unstudied research topics. As a result, an innovative visual warning system was successfully deployed based on the multi-focus studies for user acceptance testing in the Case Study mine in Feb 2022. The main contribution is that this research verifies the multi-focus group method might be an effective tool for systematically eliciting business requirements. Another contribution is to develop a flowchart for adding to Systems Analysis & Design course in information system education, which may guide BIS students step by step on using the multi-focus group method to explore business system requirements in practice.

Keywordssystems analysis ; schools ; industrial research ; coal ; data visualization ; research and analysis methods ; data acquisition ; industrial organization
Year2023
JournalPLoS ONE
Journal citation18 (3), p. Article e0281603
PublisherPublic Library of Science
ISSN1932-6203
Digital Object Identifier (DOI)https://doi.org/10.1371/journal.pone.0281603
PubMed ID36897871
Scopus EID2-s2.0-85149783741
PubMed Central IDPMC10027421
Open accessPublished as ‘gold’ (paid) open access
Page range1-16
FunderShanxi Provincial Education Science
Shanxi Coking Coal Project
Shanxi Social Science Federation
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online10 Mar 2023
Publication process dates
Accepted26 Jan 2023
Deposited17 Feb 2025
Grant IDGH-21316
201809fx03
SSKLZDKT2019053
Additional information

© 2023 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Permalink -

https://acuresearchbank.acu.edu.au/item/91545/using-multi-focus-group-method-as-an-effective-tool-for-eliciting-business-system-requirements-verified-by-a-case-study

Download files


Publisher's version
OA_Wu_2023_Using_multi_focus_group_method_as.pdf
License: CC BY 4.0
File access level: Open

  • 2
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Efficient energy utilization in smart grids an artificial intelligence perspective
Qadir, Zakria, Khan, Yasir Ali, Rana, Muhammad Tausif Afzal, Din, Fareed Ud and Shafiabady, Niusha. (2025). Efficient energy utilization in smart grids an artificial intelligence perspective. In In Bhatia, Tarandeep Kaur, El Hajjami, Salma, Kaushik, Keshav, Diallo, Gayo, Ouaissa, Mariya and Khan, Inam Ullah (Ed.). Ethical artificial intelligence in power electronics pp. 133-147 CRC Press. https://doi.org/10.1201/9781032648323-9
eXplainable Artificial Intelligence (XAI) for improving organisational regility
Shafiabady, Niusha, Hadjinicolaou, Nick, Hettikankanamage, Nadeesha, MohammadiSavadkoohi, Ehsan, Wu, Robert M. X. and Vakilian, James. (2024). eXplainable Artificial Intelligence (XAI) for improving organisational regility. PLoS ONE. 19(4), p. Article e0301429. https://doi.org/10.1371/journal.pone.0301429
Real-time structural health monitoring of bridges using convolutional neural network-based loss factor analysis for enhanced energy dissipation detection
Nguyen, Thanh Q., Vu, Tu B., Shafiabady, Niusha, Nguyen, Thuy T. and Nguyen, Phuoc T.. (2024). Real-time structural health monitoring of bridges using convolutional neural network-based loss factor analysis for enhanced energy dissipation detection. Structures. 70, p. Article 107733. https://doi.org/10.1016/j.istruc.2024.107733
Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems
Wu, Robert M.X., Shafiabady, Niusha, Zhang, Huan, Lu, Haiyan, Gide, Ergun, Liu, Jinrong and Charbonnier, Clement Franck Benoit. (2024). Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems. Scientific Reports. 14(1), pp. 1-18. https://doi.org/10.1038/s41598-024-67283-4
Using Artificial Intelligence (AI) to predict organizational agility
Shafiabady, Niusha, Hadjinicolaou, Nick, Din, Fareed Ud, Bhandari, Binayak, Wu, Robert M. X. and Vakilian, James. (2023). Using Artificial Intelligence (AI) to predict organizational agility. PLoS ONE. 18(5), p. Article e0283066. https://doi.org/10.1371/journal.pone.0283066
Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms
Zaidi, Syed Fawad M., Shafiabady, Niusha and Beilby, Justin. (2023). Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms. Virtual Reality. 27(4), pp. 3613-3620. https://doi.org/10.1007/s10055-023-00813-z
V-CarE—A conceptual conceptual design model for providing COVID-19 pandemic awareness : Proposal for a virtual reality design approach to facilitate people with persistent postural-perceptual dizziness
Zaidi, Syed Fawad M., Shafiabady, Niusha, Afifi, Shereen and Beilby, Justin. (2023). V-CarE—A conceptual conceptual design model for providing COVID-19 pandemic awareness : Proposal for a virtual reality design approach to facilitate people with persistent postural-perceptual dizziness. JMIR Research Protocols. 12, p. Article e38369. https://doi.org/10.2196/38369
An FSV analysis approach to verify the robustness of the triple-correlation analysis theoretical framework
Wu, Robert M. X., Zhang, Zhongwu, Zhang, Huan, Wang, Yongwen, Shafiabady, Niusha, Yan, Wanjun, Gou, Jinwen, Gide, Ergun and Zhang, Siqing. (2023). An FSV analysis approach to verify the robustness of the triple-correlation analysis theoretical framework. Scientific Reports. 13(1), p. Article 9621. https://doi.org/10.1038/s41598-023-35900-3
Implementation of transformer-based deep learning architecture for the development of surface roughness classifier using sound and cutting force signals
Bhandari, Binayak, Park, Gijun and Shafiabady, Niusha. (2023). Implementation of transformer-based deep learning architecture for the development of surface roughness classifier using sound and cutting force signals. Neural Computing and Applications. 35(18), pp. 13275-13292. https://doi.org/10.1007/s00521-023-08425-z
Evolving Hybrid partial genetic algorithm classification model for cost-effective frailty screening : Investigative study
Oates, John, Shafiabady, Niusha, Ambagtsheer, Rachel, Beilby, Justin, Seiboth, Chris and Dent, Elsa. (2022). Evolving Hybrid partial genetic algorithm classification model for cost-effective frailty screening : Investigative study. JMIR Aging. 5(4), p. Article e38464. https://doi.org/10.2196/38464
The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set
Ambagtsheer, R. C., Shafiabady, N., Dent, E., Seiboth, C. and Beilby, J.. (2020). The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set. International Journal of Medical Informatics. 136, p. Article 104094. https://doi.org/10.1016/j.ijmedinf.2020.104094
ST (Shafiabady-Teshnehlab) optimization algorithm
Shafiabady, Niusha. (2018). ST (Shafiabady-Teshnehlab) optimization algorithm. In In Tan, Ying (Ed.). Swarm intelligence : Volume 2 : Innovation, new algorithms and methods pp. 83-110 The Institution of Engineering and Technology. https://doi.org/10.1049/pbce119g_ch4
Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents
Motlagh, Farid, Ibrahim, Fatimah, Rashid, Rusdi, Shafiabady, Niusha, Seghatoleslam, Tahereh and Habil, Hussain. (2018). Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents. Psychopharmacology. 235(11), pp. 3273-3288. https://doi.org/10.1007/s00213-018-5035-0