Multi-dimensional perceptual recognition of tourist destination using deep learning model and geographic information system

Journal article


Zhang, Shengtian, Li, Yong, Song, Xiaoxia, Yang, Chenghao, Shafiabady, Niusha and Wu, Robert M. X.. (2025). Multi-dimensional perceptual recognition of tourist destination using deep learning model and geographic information system. PLoS ONE. 20, p. Article e0318846. https://doi.org/10.1371/journal.pone.0318846
AuthorsZhang, Shengtian, Li, Yong, Song, Xiaoxia, Yang, Chenghao, Shafiabady, Niusha and Wu, Robert M. X.
Abstract

Perceptual recognition of tourist destinations is vital in representing the destination image, supporting destination management decision-making, and promoting tourism recommendations. However, previous studies on tourist destination perception have limitations regarding accuracy and completeness related to research methods. This study addresses these limitations by proposing an efficient strategy to achieve precise perceptual recognition of tourist destinations while ensuring the integrity of user-generated content (UGC) data and the completeness of perception dimensions. We integrated various types of UGC data, including images, texts, and spatiotemporal information, to create a comprehensive UGC dataset. Then, we adopted the improved Inception V3 model, the bidirectional long short-term memory network (BiLSTM) model with multi-head attention, and geographic information system (GIS) technology to recognize basic tourist feature information from the UGC dataset, such as the content, sentiment, and spatiotemporal perceptual dimensions of the data, achieving a recognition accuracy of over 97%. Finally, a progressive dimension combination method was proposed to visualize and analyze multiple perceptions. An experimental case study demonstrated the strategy’s effectiveness, focusing on tourists’ perceptions of Datong, China. Experimental results show that the approach is feasible for studying tourist destination perception. Content perception, sentiment perception, and the perception of Datong’s spatial and temporal characteristics were recognized and analyzed efficiently. This study offers valuable guidance and a reference framework for selecting methods and technical routes in tourist destination perception.

Year2025
JournalPLoS ONE
Journal citation20, p. Article e0318846
PublisherPublic Library of Science
ISSN1932-6203
Digital Object Identifier (DOI)https://doi.org/10.1371/journal.pone.0318846
PubMed ID39919101
Scopus EID2-s2.0-85217506395
PubMed Central IDPMC11805380
Open accessPublished as ‘gold’ (paid) open access
Page range1-33
FunderNatural Science Foundation of Shanxi
Shanxi Provincial Education Department
Shanxi Datong University
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online07 Feb 2025
Publication process dates
Accepted10 Dec 2024
Deposited28 May 2025
Grant ID20230302121183
2022L439
2021Q1
Additional information

© 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Permalink -

https://acuresearchbank.acu.edu.au/item/91x82/multi-dimensional-perceptual-recognition-of-tourist-destination-using-deep-learning-model-and-geographic-information-system

Download files


Publisher's version
  • 1
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Resource constraint crop damage classification using depth channel shuffling
Islam, Md Tanvir, Swapnil, Safkat Shahrier, Billal, Md. Masum, Karim, Asif, Shafiabady, Niusha and Hassan, Md. Mehedi. (2025). Resource constraint crop damage classification using depth channel shuffling. Engineering Applications of Artificial Intelligence. 144, p. Article 110117. https://doi.org/10.1016/j.engappai.2025.110117
Loss factor analysis in real-time structural health monitoring using a convolutional neural network
Nguyen, Thanh Q., Vu, Tu B., Shafiabady, Niusha, Nguyen, Thuy T. and Nguyen, Phuoc T.. (2025). Loss factor analysis in real-time structural health monitoring using a convolutional neural network. Archive of Applied Mechanics. 95(1), p. Article 15. https://doi.org/10.1007/s00419-024-02712-4
Application of CNN and MLP models for structural health monitoring : A case study on Saigon Bridge
Nguyen, Thanh Q., Vu, Tu B., Shafiabady, Niusha, Nguyen, Thuy T. and Nguyen, Phuoc T.. (2025). Application of CNN and MLP models for structural health monitoring : A case study on Saigon Bridge. Journal of Low Frequency Noise Vibration and Active Control. pp. 1-30. https://doi.org/10.1177/14613484251332711
Predicting postgraduate student engagement using artificial intelligence (AI)
Shafiabady, Niusha, Koo, Tebbin (Fung), Din, Fareed Ud, Sattarshetty, Kabir, Yen, Margaret, Alazab, Mamoun and Alsharaydeh, Ethar. (2025). Predicting postgraduate student engagement using artificial intelligence (AI). IEEE Transactions on Artificial Intelligence. pp. 1-12. https://doi.org/10.1109/TAI.2025.3548016
Applications of Explainable Artificial Intelligence (XAI) and interpretable Artificial Intelligence (AI) in smart buildings and energy savings in buildings : A systematic review
Haghighat, Mohammadreza, MohammadiSavadkoohi, Ehsan and Shafiabady, Niusha. (2025). Applications of Explainable Artificial Intelligence (XAI) and interpretable Artificial Intelligence (AI) in smart buildings and energy savings in buildings : A systematic review. Journal of Building Engineering. 107, p. Article 112542. https://doi.org/10.1016/j.jobe.2025.112542
ECgMLP : A novel gated MLP model for enhanced endometrial cancer diagnosis
Sheakh, Md. Alif, Azam, Sami, Tahosin, Mst. Sazia, Karim, Asif, Montaha, Sidratul, Fahim, Kayes Uddin, Shafiabady, Niusha, Jonkman, Mirjam and De Boer, Friso. (2025). ECgMLP : A novel gated MLP model for enhanced endometrial cancer diagnosis. Computer Methods and Programs in Biomedicine Update. 7, p. Article 100181. https://doi.org/10.1016/j.cmpbup.2025.100181
Efficient energy utilization in smart grids an artificial intelligence perspective
Qadir, Zakria, Khan, Yasir Ali, Rana, Muhammad Tausif Afzal, Din, Fareed Ud and Shafiabady, Niusha. (2025). Efficient energy utilization in smart grids an artificial intelligence perspective. In In Bhatia, Tarandeep Kaur, El Hajjami, Salma, Kaushik, Keshav, Diallo, Gayo, Ouaissa, Mariya and Khan, Inam Ullah (Ed.). Ethical artificial intelligence in power electronics pp. 133-147 CRC Press. https://doi.org/10.1201/9781032648323-9
AI is everywhere – including countless applications you’ve likely never heard of
Shafiabady, Niusha. (2024). AI is everywhere – including countless applications you’ve likely never heard of The Conversation Media Group.
Reliable and faithful generative explainers for graph neural networks
Li, Yiqiao, Zhou, Jianlong, Zheng, Boyuan, Shafiabady, Niusha and Chen, Fang. (2024). Reliable and faithful generative explainers for graph neural networks. Machine Learning and Knowledge Extraction. 6(4), pp. 2913-2929. https://doi.org/10.3390/make6040139
Automated diagnosis of respiratory diseases from lung ultrasound videos ensuring XAI : An innovative hybrid model approach
Abian, Arefin Ittesafun, Khan Raiaan, Mohaimenul Azam, Karim, Asif, Azam, Sami, Fahad, Nur Mohammad, Shafiabady, Niusha, Yeo, Kheng Cher and De Boer, Friso. (2024). Automated diagnosis of respiratory diseases from lung ultrasound videos ensuring XAI : An innovative hybrid model approach. Frontiers in Computer Science. 6, p. Article 1438126. https://doi.org/10.3389/fcomp.2024.1438126
eXplainable Artificial Intelligence (XAI) for improving organisational regility
Shafiabady, Niusha, Hadjinicolaou, Nick, Hettikankanamage, Nadeesha, MohammadiSavadkoohi, Ehsan, Wu, Robert M. X. and Vakilian, James. (2024). eXplainable Artificial Intelligence (XAI) for improving organisational regility. PLoS ONE. 19(4), p. Article e0301429. https://doi.org/10.1371/journal.pone.0301429
Real-time structural health monitoring of bridges using convolutional neural network-based loss factor analysis for enhanced energy dissipation detection
Nguyen, Thanh Q., Vu, Tu B., Shafiabady, Niusha, Nguyen, Thuy T. and Nguyen, Phuoc T.. (2024). Real-time structural health monitoring of bridges using convolutional neural network-based loss factor analysis for enhanced energy dissipation detection. Structures. 70, p. Article 107733. https://doi.org/10.1016/j.istruc.2024.107733
Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems
Wu, Robert M.X., Shafiabady, Niusha, Zhang, Huan, Lu, Haiyan, Gide, Ergun, Liu, Jinrong and Charbonnier, Clement Franck Benoit. (2024). Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems. Scientific Reports. 14(1), pp. 1-18. https://doi.org/10.1038/s41598-024-67283-4
Whose job will AI replace? Here’s why a clerk in Ethiopia has more to fear than one in California
Shafiabady, Niusha. (2023). Whose job will AI replace? Here’s why a clerk in Ethiopia has more to fear than one in California The Conversation Media Group.
ACGAN-GNNExplainer : Auxiliary conditional generative explainer for graph neural networks
Li, Yiqiao, Zhou, Jianlong, Dong, Yifei, Shafiabady, Niusha and Chen, Fang. (2023). ACGAN-GNNExplainer : Auxiliary conditional generative explainer for graph neural networks. 32nd ACM International Conference on Information and Knowledge Management (CIKM ’23). Birmingham, United Kingdom 21 - 25 Oct 2023 Association for Computing Machinery. pp. 1259-1267 https://doi.org/10.1145/3583780.3614772
Using Artificial Intelligence (AI) to predict organizational agility
Shafiabady, Niusha, Hadjinicolaou, Nick, Din, Fareed Ud, Bhandari, Binayak, Wu, Robert M. X. and Vakilian, James. (2023). Using Artificial Intelligence (AI) to predict organizational agility. PLoS ONE. 18(5), p. Article e0283066. https://doi.org/10.1371/journal.pone.0283066
Using multi-focus group method as an effective tool for eliciting business system requirements : Verified by a case study
Wu, Robert M. X., Wang, Yongwen, Shafiabady, Niusha, Zhang, Huan, Yan, Wanjun, Gou, Jinwen, Shi, Yong, Liu, Bao, Gide, Ergun, Kang, Changlong, Zhang, Zhongwu, Shen, Bo, Li, Xiaoquan, Fan, Jianfeng, He, Xiangqian, Soar, Jeffrey, Zhao, Haijun, Sun, Lei, Huo, Wenying and Wang, Ya. (2023). Using multi-focus group method as an effective tool for eliciting business system requirements : Verified by a case study. PLoS ONE. 18(3), p. Article e0281603. https://doi.org/10.1371/journal.pone.0281603
Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms
Zaidi, Syed Fawad M., Shafiabady, Niusha and Beilby, Justin. (2023). Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms. Virtual Reality. 27(4), pp. 3613-3620. https://doi.org/10.1007/s10055-023-00813-z
V-CarE—A conceptual conceptual design model for providing COVID-19 pandemic awareness : Proposal for a virtual reality design approach to facilitate people with persistent postural-perceptual dizziness
Zaidi, Syed Fawad M., Shafiabady, Niusha, Afifi, Shereen and Beilby, Justin. (2023). V-CarE—A conceptual conceptual design model for providing COVID-19 pandemic awareness : Proposal for a virtual reality design approach to facilitate people with persistent postural-perceptual dizziness. JMIR Research Protocols. 12, p. Article e38369. https://doi.org/10.2196/38369
An FSV analysis approach to verify the robustness of the triple-correlation analysis theoretical framework
Wu, Robert M. X., Zhang, Zhongwu, Zhang, Huan, Wang, Yongwen, Shafiabady, Niusha, Yan, Wanjun, Gou, Jinwen, Gide, Ergun and Zhang, Siqing. (2023). An FSV analysis approach to verify the robustness of the triple-correlation analysis theoretical framework. Scientific Reports. 13(1), p. Article 9621. https://doi.org/10.1038/s41598-023-35900-3
Implementation of transformer-based deep learning architecture for the development of surface roughness classifier using sound and cutting force signals
Bhandari, Binayak, Park, Gijun and Shafiabady, Niusha. (2023). Implementation of transformer-based deep learning architecture for the development of surface roughness classifier using sound and cutting force signals. Neural Computing and Applications. 35(18), pp. 13275-13292. https://doi.org/10.1007/s00521-023-08425-z
Persistent postural-perceptual dizziness interventions—an embodied insight on the use virtual reality for technologists
Zaidi, Syed Fawad M., Shafiabady, Niusha and Beilby, Justin. (2022). Persistent postural-perceptual dizziness interventions—an embodied insight on the use virtual reality for technologists. Electronics. 11(1), p. Article 142. https://doi.org/10.3390/electronics11010142
Evolving Hybrid partial genetic algorithm classification model for cost-effective frailty screening : Investigative study
Oates, John, Shafiabady, Niusha, Ambagtsheer, Rachel, Beilby, Justin, Seiboth, Chris and Dent, Elsa. (2022). Evolving Hybrid partial genetic algorithm classification model for cost-effective frailty screening : Investigative study. JMIR Aging. 5(4), p. Article e38464. https://doi.org/10.2196/38464
The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set
Ambagtsheer, R. C., Shafiabady, N., Dent, E., Seiboth, C. and Beilby, J.. (2020). The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set. International Journal of Medical Informatics. 136, p. Article 104094. https://doi.org/10.1016/j.ijmedinf.2020.104094
ST (Shafiabady-Teshnehlab) optimization algorithm
Shafiabady, Niusha. (2018). ST (Shafiabady-Teshnehlab) optimization algorithm. In In Tan, Ying (Ed.). Swarm intelligence : Volume 2 : Innovation, new algorithms and methods pp. 83-110 The Institution of Engineering and Technology. https://doi.org/10.1049/pbce119g_ch4
Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents
Motlagh, Farid, Ibrahim, Fatimah, Rashid, Rusdi, Shafiabady, Niusha, Seghatoleslam, Tahereh and Habil, Hussain. (2018). Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents. Psychopharmacology. 235(11), pp. 3273-3288. https://doi.org/10.1007/s00213-018-5035-0