Aberrant plasticity in musculoskeletal pain : A failure of homeostatic control?

Journal article


Thapa, Tribikram, Graven-Nielsen, Thomas and Schabrun, Siobhan M.. (2021). Aberrant plasticity in musculoskeletal pain : A failure of homeostatic control? Experimental Brain Research. 239(4), pp. 1317-1326. https://doi.org/10.1007/s00221-021-06062-3
AuthorsThapa, Tribikram, Graven-Nielsen, Thomas and Schabrun, Siobhan M.
Abstract

Aberrant synaptic plasticity is hypothesised to underpin chronic pain. Yet, synaptic plasticity regulated by homeostatic mechanisms have received limited attention in pain. We investigated homeostatic plasticity in the human primary motor cortex (M1) of 21 healthy individuals in response to experimentally induced muscle pain for several days. Experimental pain was induced by injecting nerve growth factor into the muscle belly of the right extensor carpi radialis brevis muscle. Pain and disability were monitored until day 21. Homeostatic plasticity was induced on day 0, 2, 4, 6, and 14 in the left M1 using anodal transcranial direct stimulation (tDCS) applied for 7 and 5 min, separated by a 3-min rest period. Motor-evoked potentials (MEP) to transcranial magnetic stimulation assessed the homeostatic response. On days 0 and 14, MEPs increased following the first block of tDCS (p < 0.004), and decreased following the second block of tDCS (p < 0.001), consistent with a normal homeostatic response. However, on days 2 (p = 0.07) and 4 (p = 0.7), the decrease in MEPs after the second block of tDCS was attenuated, representing an impaired homeostatic response. Findings demonstrate altered homeostatic plasticity in the M1 with the greatest alteration observed after 4 days of sustained pain. This study provides longitudinal insight into homeostatic plasticity in response to the development, maintenance, and resolution of pain over the course of 14 days.

Keywordshomeostatic plasticity; musculoskeletal pain; non-invasive brain stimulation; nerve growth factor
Year2021
JournalExperimental Brain Research
Journal citation239 (4), pp. 1317-1326
PublisherSpringer
ISSN0014-4819
Digital Object Identifier (DOI)https://doi.org/10.1007/s00221-021-06062-3
PubMed ID33635391
Scopus EID2-s2.0-85101735515
Open accessPublished as green open access
Page range1317-1326
FunderNational Health and Medical Research Council (NHMRC)
Danish National Research Foundation
Author's accepted manuscript
License
All rights reserved
File Access Level
Open
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online26 Feb 2021
Publication process dates
Accepted10 Feb 2021
Deposited19 Oct 2023
Grant ID1105040
DNRF121
Permalink -

https://acuresearchbank.acu.edu.au/item/8zwq8/aberrant-plasticity-in-musculoskeletal-pain-a-failure-of-homeostatic-control

Download files


Author's accepted manuscript
AM_Thapa_2021_Aberrant_plasticity_in_musculoskeletal_pain_A.pdf
License: All rights reserved
File access level: Open

Restricted files

Publisher's version

  • 13
    total views
  • 5
    total downloads
  • 2
    views this month
  • 1
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Resting state functional connectivity in adolescent synthetic cannabinoid users with and without attention-deficit/hyperactivity disorder
Yüncü, Zeki, Cakmak Celik, Zehra, Colak, Ciğdem, Thapa, Tribikram, Fornito, Alex, Bora, Emre, Kitis, Omer and Zorlu, Nabi. (2021). Resting state functional connectivity in adolescent synthetic cannabinoid users with and without attention-deficit/hyperactivity disorder. Human Psychopharmacology. 36(5), p. Article e2781. https://doi.org/10.1002/hup.2781
No evidence for changes in GABA concentration, functional connectivity, or working memory following continuous theta burst stimulation over dorsolateral prefrontal cortex
Thapa, Tribikram, Hendrikse, Joshua, Thompson, Sarah, Suo, Chao, Biabani, Mana, Morrow, James, Hoy, Kate E., Fitzgerald, Paul B., Fornito, Alex and Rogasch, Nigel C.. (2021). No evidence for changes in GABA concentration, functional connectivity, or working memory following continuous theta burst stimulation over dorsolateral prefrontal cortex. Neuroimage: Reports. 1(4), p. Article 100061. https://doi.org/10.1016/j.ynirp.2021.100061
Neural multimodal integration underlying synchronization with a co-performer in music : Influences of motor expertise and visual information
Timmers, Renee, MacRitchie, Jennifer, Schabrun, Siobhan M., Thapa, Tribikram, Varlet, Manuel and Keller, Peter E.. (2020). Neural multimodal integration underlying synchronization with a co-performer in music : Influences of motor expertise and visual information. Neuroscience Letters. 721, p. Article 134803. https://doi.org/10.1016/j.neulet.2020.134803
Cerebral peak alpha frequency reflects average pain severity in a human model of sustained, musculoskeletal pain
Furman, Andrew J., Thapa Rana, Tribikram, Summers, Simon J., Cavaleri, Rocco, Fogarty, Jack S., Steiner, Genevieve Z., Schabrun, Siobhan M. and Seminowicz, David A.. (2019). Cerebral peak alpha frequency reflects average pain severity in a human model of sustained, musculoskeletal pain. Journal of Neurophysiology. 122(4), pp. 1784-1793. https://doi.org/10.1152/jn.00279.2019
Corticomotor depression is associated with higher pain severity in the transition to sustained pain : A longitudinal exploratory study of individual differences
Seminowicz, David A., Thapa Rana, Tribikram and Schabrun, Siobhan M.. (2019). Corticomotor depression is associated with higher pain severity in the transition to sustained pain : A longitudinal exploratory study of individual differences. Journal of Pain. 20(12), pp. 1498-1506. https://doi.org/10.1016/j.jpain.2019.06.005
Test-retest reliability of homeostatic plasticity in the human primary motor cortex
Thapa, Tribikram and Schabrun, Siobhan M.. (2018). Test-retest reliability of homeostatic plasticity in the human primary motor cortex. Neural Plasticity. 2018, p. Article 6207508. https://doi.org/10.1155/2018/6207508
The influence of kinesiology tape colour on performance and corticomotor activity in healthy adults : A randomised crossover controlled trial
Cavaleri, Rocco, Thapa, Tribikram, Beckenkamp, Paula R. and Chipchase, Lucinda S.. (2018). The influence of kinesiology tape colour on performance and corticomotor activity in healthy adults : A randomised crossover controlled trial. BMC Sports Science, Medicine and Rehabilitation. 10(1), p. Article 17. https://doi.org/10.1186/s13102-018-0106-4
Movement does not promote recovery of motor output following acute experimental muscle pain
Schabrun, Siobhan M., Palsson, Thorvaldur S., Thapa, Tribikram and Graven-Nielsen, Thomas. (2018). Movement does not promote recovery of motor output following acute experimental muscle pain. Pain Medicine. 19(3), pp. 608-614. https://doi.org/10.1093/pm/pnx099
Disruption of cortical synaptic homeostasis in individuals with chronic low back pain
Thapa, Tribikram, Graven-Nielsen, Thomas, Chipchase, Lucinda S. and Schabrun, Siobhan M.. (2018). Disruption of cortical synaptic homeostasis in individuals with chronic low back pain. Clinical Neurophysiology. 129(5), pp. 1090-1096. https://doi.org/10.1016/j.clinph.2018.01.060
The response of the primary motor cortex to neuromodulation is altered in chronic low back pain : A preliminary study
Schabrun, Siobhan M., Burns, Emma, Thapa, Tribikram and Hodges, Paul. (2018). The response of the primary motor cortex to neuromodulation is altered in chronic low back pain : A preliminary study. Pain Medicine. 19(6), pp. 1227-1236. https://doi.org/10.1093/pm/pnx168