Can modalities save naive set theory?

Journal article


Fritz, Peter, Lederman, Harvey, Liu, Tiankai and Scott, Dana 2018. Can modalities save naive set theory? Review of Symbolic Logic. 11 (1), pp. 21 - 47. https://doi.org/10.1017/S1755020317000168
AuthorsFritz, Peter, Lederman, Harvey, Liu, Tiankai and Scott, Dana
Year2018
JournalReview of Symbolic Logic
Journal citation11 (1), pp. 21 - 47
PublisherCambridge University Press
ISSN1755-0203
Digital Object Identifier (DOI)https://doi.org/10.1017/S1755020317000168
Scopus EID2-s2.0-85042211108
Page range21 - 47
Research GroupDianoia Institute of Philosophy
Place of publicationUnited Kingdom
Permalink -

https://acuresearchbank.acu.edu.au/item/878zx/can-modalities-save-naive-set-theory

Restricted files

Publisher's version

  • 0
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Propositional quantification in Bimodal S5
Fritz, Peter 2020. Propositional quantification in Bimodal S5. Erkenntnis. 85, pp. 455 - 465. https://doi.org/10.1007/s10670-018-0035-3
Operator arguments revisited
Fritz, Peter, Hawthorne, John and Yli-Vakkuri, Juhani 2019. Operator arguments revisited. Philosophical Studies. 176 (11), pp. 2933 - 2959. https://doi.org/10.1007/s11098-018-1158-8
Higher-Order contingentism, Part 2: Patterns of indistinguishability
Fritz, Peter 2018. Higher-Order contingentism, Part 2: Patterns of indistinguishability. Journal of Philosophical Logic. 47 (3), pp. 407 - 418. https://doi.org/10.1007/s10992-017-9432-3
Higher-Order contingentism, Part 3: Expressive limitations
Fritz, Peter 2018. Higher-Order contingentism, Part 3: Expressive limitations. Journal of Philosophical Logic. 47 (4), pp. 649 - 671. https://doi.org/10.1007/s10992-017-9443-0
Logics for propositional contingentism
Fritz, Peter 2017. Logics for propositional contingentism. The Review of Symbolic Logic. 10 (2), pp. 203 - 236. https://doi.org/10.1017/S1755020317000028
A purely recombinatorial puzzle
Fritz, Peter 2017. A purely recombinatorial puzzle. Noûs. 51 (3), pp. 547 - 564. https://doi.org/10.1111/nous.12172
Counting incompossibles
Fritz, Peter and Goodman, Jeremy 2017. Counting incompossibles. Mind. 126 (504), pp. 1063 - 1108. https://doi.org/10.1093/mind/fzw026
Counterfactuals and propositional contingentism
Fritz, Peter and Goodman, Jeremy 2017. Counterfactuals and propositional contingentism. Review of Symbolic Logic. 10 (3), pp. 509 - 529. https://doi.org/10.1017/S1755020317000144
Propositional contingentism
Fritz, Peter 2016. Propositional contingentism. Review of Symbolic Logic. 9 (1), pp. 123 - 142. https://doi.org/10.1017/S1755020315000325
Higher-Order contingentism, Part 1: Closure and generation
Fritz, Peter and Goodman, Jeremy 2016. Higher-Order contingentism, Part 1: Closure and generation. Journal of Philosophical Logic. 45 (6), pp. 645 - 695. https://doi.org/10.1007/s10992-015-9388-0
First-order modal logic in the necessary framework of objects
Fritz, Peter 2016. First-order modal logic in the necessary framework of objects. Canadian Journal of Philosophy. 46 (4-5), pp. 584 - 609. https://doi.org/10.1080/00455091.2015.1132976