What is the correct logic of necessity, actuality and apriority?

Journal article


Peter Fritz. (2014). What is the correct logic of necessity, actuality and apriority? Review of Symbolic Logic. 7(3), pp. 385-414. https://doi.org/10.1017/S1755020314000136
AuthorsPeter Fritz
Abstract

This paper is concerned with a propositional modal logic with operators for necessity, actuality and apriority. The logic is characterized by a class of relational structures defined according to ideas of epistemic two-dimensional semantics, and can therefore be seen as formalizing the relations between necessity, actuality and apriority according to epistemic two-dimensional semantics. We can ask whether this logic is correct, in the sense that its theorems are all and only the informally valid formulas. This paper gives outlines of two arguments that jointly show that this is the case. The first is intended to show that the logic is informally sound, in the sense that all of its theorems are informally valid. The second is intended to show that it is informally complete, in the sense that all informal validities are among its theorems. In order to give these arguments, a number of independently interesting results concerning the logic are proven. In particular, the soundness and completeness of two proof systems with respect to the semantics is proven (Theorems 2.11 and 2.15), as well as a normal form theorem (Theorem 3.2), an elimination theorem for the actuality operator (Corollary 3.6), and the decidability of the logic (Corollary 3.7). It turns out that the logic invalidates a plausible principle concerning the interaction of apriority and necessity; consequently, a variant semantics is briefly explored on which this principle is valid. The paper concludes by assessing the implications of these results for epistemic two-dimensional semantics.

Year2014
JournalReview of Symbolic Logic
Journal citation7 (3), pp. 385-414
PublisherCambridge University Press
ISSN1755-0203
Digital Object Identifier (DOI)https://doi.org/10.1017/S1755020314000136
Scopus EID2-s2.0-84916237823
Research or scholarlyResearch
Page range385-414
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online12 May 2014
Publication process dates
Deposited24 Aug 2021
Permalink -

https://acuresearchbank.acu.edu.au/item/8wq1y/what-is-the-correct-logic-of-necessity-actuality-and-apriority

Restricted files

Publisher's version

  • 77
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Being somehow without (possibly) being something
Fritz, Peter. (2023). Being somehow without (possibly) being something. Mind. 132(526), pp. 348-371. https://doi.org/10.1093/mind/fzac052
Operands and instances
Fritz, Peter. (2023). Operands and instances. The Review of Symbolic Logic. 16(1), pp. 188-209. https://doi.org/10.1017/S175502032100040X
Axiomatizability of propositionally quantified modal logics on relational frames
Fritz, Peter. (2022). Axiomatizability of propositionally quantified modal logics on relational frames. The Journal of Symbolic Logic. pp. 1-36. https://doi.org/10.1017/jsl.2022.79
Ground and grain
Fritz, Peter. (2022). Ground and grain. Philosophy and Phenomenological Research. 105(2), pp. 299-330. https://doi.org/10.1111/phpr.12822
Closed structure
Fritz, Peter, Lederman, Harvey and Uzquiano, Gabriel. (2021). Closed structure. Journal of Philosophical Logic. 50, pp. 1249-1291. https://doi.org/10.1007/s10992-021-09598-5
On Stalnaker’s Simple Theory of Propositions
Fritz, Peter. (2021). On Stalnaker’s Simple Theory of Propositions. Journal of Philosophical Logic. 50, pp. 1-31. https://doi.org/10.1007/s10992-020-09557-6
On higher-order logical grounds
Fritz, Peter. (2020). On higher-order logical grounds. Analysis. 80(4), p. 656–666. https://doi.org/10.1093/analys/anz085
Propositional quantification in Bimodal S5
Fritz, Peter. (2020). Propositional quantification in Bimodal S5. Erkenntnis. 85, pp. 455 - 465. https://doi.org/10.1007/s10670-018-0035-3
Operator arguments revisited
Fritz, Peter, Hawthorne, John and Yli-Vakkuri, Juhani. (2019). Operator arguments revisited. Philosophical Studies. 176(11), pp. 2933 - 2959. https://doi.org/10.1007/s11098-018-1158-8
Higher-Order contingentism, Part 2: Patterns of indistinguishability
Fritz, Peter. (2018). Higher-Order contingentism, Part 2: Patterns of indistinguishability. Journal of Philosophical Logic. 47(3), pp. 407 - 418. https://doi.org/10.1007/s10992-017-9432-3
Can modalities save naive set theory?
Fritz, Peter, Lederman, Harvey, Liu, Tiankai and Scott, Dana. (2018). Can modalities save naive set theory? Review of Symbolic Logic. 11(1), pp. 21 - 47. https://doi.org/10.1017/S1755020317000168
Higher-Order contingentism, Part 3: Expressive limitations
Fritz, Peter. (2018). Higher-Order contingentism, Part 3: Expressive limitations. Journal of Philosophical Logic. 47(4), pp. 649 - 671. https://doi.org/10.1007/s10992-017-9443-0
Logics for propositional contingentism
Fritz, Peter. (2017). Logics for propositional contingentism. The Review of Symbolic Logic. 10(2), pp. 203 - 236. https://doi.org/10.1017/S1755020317000028
A purely recombinatorial puzzle
Fritz, Peter. (2017). A purely recombinatorial puzzle. Noûs. 51(3), pp. 547 - 564. https://doi.org/10.1111/nous.12172
Counting incompossibles
Fritz, Peter and Goodman, Jeremy. (2017). Counting incompossibles. Mind. 126(504), pp. 1063 - 1108. https://doi.org/10.1093/mind/fzw026
Counterfactuals and propositional contingentism
Fritz, Peter and Goodman, Jeremy. (2017). Counterfactuals and propositional contingentism. Review of Symbolic Logic. 10(3), pp. 509 - 529. https://doi.org/10.1017/S1755020317000144
Propositional contingentism
Fritz, Peter. (2016). Propositional contingentism. Review of Symbolic Logic. 9(1), pp. 123 - 142. https://doi.org/10.1017/S1755020315000325
Higher-Order contingentism, Part 1: Closure and generation
Fritz, Peter and Goodman, Jeremy. (2016). Higher-Order contingentism, Part 1: Closure and generation. Journal of Philosophical Logic. 45(6), pp. 645 - 695. https://doi.org/10.1007/s10992-015-9388-0
First-order modal logic in the necessary framework of objects
Fritz, Peter. (2016). First-order modal logic in the necessary framework of objects. Canadian Journal of Philosophy. 46(4-5), pp. 584 - 609. https://doi.org/10.1080/00455091.2015.1132976