A purely recombinatorial puzzle

Journal article


Fritz, Peter. (2017). A purely recombinatorial puzzle. Noûs. 51(3), pp. 547 - 564. https://doi.org/10.1111/nous.12172
AuthorsFritz, Peter
Abstract

A new puzzle of modal recombination is presented which relies purely on resources of first‐order modal logic. It shows that naive recombinatorial reasoning, which has previously been shown to be inconsistent with various assumptions concerning propositions, sets and classes, leads to inconsistency by itself. The context sensitivity of modal expressions is suggested as the source of the puzzle, and it is argued that it gives us reason to reconsider the assumption that the notion of metaphysical necessity is in good standing.

Year2017
JournalNoûs
Journal citation51 (3), pp. 547 - 564
PublisherBlackwell Publishing Ltd
ISSN0029-4624
Digital Object Identifier (DOI)https://doi.org/10.1111/nous.12172
Scopus EID2-s2.0-84994518201
Page range547 - 564
Research GroupDianoia Institute of Philosophy
Publisher's version
File Access Level
Controlled
Place of publicationUnited Kingdom
Permalink -

https://acuresearchbank.acu.edu.au/item/88v2v/a-purely-recombinatorial-puzzle

Restricted files

Publisher's version

  • 108
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Being somehow without (possibly) being something
Fritz, Peter. (2023). Being somehow without (possibly) being something. Mind. 132(526), pp. 348-371. https://doi.org/10.1093/mind/fzac052
Operands and instances
Fritz, Peter. (2023). Operands and instances. The Review of Symbolic Logic. 16(1), pp. 188-209. https://doi.org/10.1017/S175502032100040X
Axiomatizability of propositionally quantified modal logics on relational frames
Fritz, Peter. (2022). Axiomatizability of propositionally quantified modal logics on relational frames. The Journal of Symbolic Logic. pp. 1-36. https://doi.org/10.1017/jsl.2022.79
Ground and grain
Fritz, Peter. (2022). Ground and grain. Philosophy and Phenomenological Research. 105(2), pp. 299-330. https://doi.org/10.1111/phpr.12822
Closed structure
Fritz, Peter, Lederman, Harvey and Uzquiano, Gabriel. (2021). Closed structure. Journal of Philosophical Logic. 50, pp. 1249-1291. https://doi.org/10.1007/s10992-021-09598-5
On Stalnaker’s Simple Theory of Propositions
Fritz, Peter. (2021). On Stalnaker’s Simple Theory of Propositions. Journal of Philosophical Logic. 50, pp. 1-31. https://doi.org/10.1007/s10992-020-09557-6
On higher-order logical grounds
Fritz, Peter. (2020). On higher-order logical grounds. Analysis. 80(4), p. 656–666. https://doi.org/10.1093/analys/anz085
Propositional quantification in Bimodal S5
Fritz, Peter. (2020). Propositional quantification in Bimodal S5. Erkenntnis. 85, pp. 455 - 465. https://doi.org/10.1007/s10670-018-0035-3
Operator arguments revisited
Fritz, Peter, Hawthorne, John and Yli-Vakkuri, Juhani. (2019). Operator arguments revisited. Philosophical Studies. 176(11), pp. 2933 - 2959. https://doi.org/10.1007/s11098-018-1158-8
Higher-Order contingentism, Part 2: Patterns of indistinguishability
Fritz, Peter. (2018). Higher-Order contingentism, Part 2: Patterns of indistinguishability. Journal of Philosophical Logic. 47(3), pp. 407 - 418. https://doi.org/10.1007/s10992-017-9432-3
Can modalities save naive set theory?
Fritz, Peter, Lederman, Harvey, Liu, Tiankai and Scott, Dana. (2018). Can modalities save naive set theory? Review of Symbolic Logic. 11(1), pp. 21 - 47. https://doi.org/10.1017/S1755020317000168
Higher-Order contingentism, Part 3: Expressive limitations
Fritz, Peter. (2018). Higher-Order contingentism, Part 3: Expressive limitations. Journal of Philosophical Logic. 47(4), pp. 649 - 671. https://doi.org/10.1007/s10992-017-9443-0
Logics for propositional contingentism
Fritz, Peter. (2017). Logics for propositional contingentism. The Review of Symbolic Logic. 10(2), pp. 203 - 236. https://doi.org/10.1017/S1755020317000028
Counting incompossibles
Fritz, Peter and Goodman, Jeremy. (2017). Counting incompossibles. Mind. 126(504), pp. 1063 - 1108. https://doi.org/10.1093/mind/fzw026
Counterfactuals and propositional contingentism
Fritz, Peter and Goodman, Jeremy. (2017). Counterfactuals and propositional contingentism. Review of Symbolic Logic. 10(3), pp. 509 - 529. https://doi.org/10.1017/S1755020317000144
Propositional contingentism
Fritz, Peter. (2016). Propositional contingentism. Review of Symbolic Logic. 9(1), pp. 123 - 142. https://doi.org/10.1017/S1755020315000325
Higher-Order contingentism, Part 1: Closure and generation
Fritz, Peter and Goodman, Jeremy. (2016). Higher-Order contingentism, Part 1: Closure and generation. Journal of Philosophical Logic. 45(6), pp. 645 - 695. https://doi.org/10.1007/s10992-015-9388-0
First-order modal logic in the necessary framework of objects
Fritz, Peter. (2016). First-order modal logic in the necessary framework of objects. Canadian Journal of Philosophy. 46(4-5), pp. 584 - 609. https://doi.org/10.1080/00455091.2015.1132976
What is the correct logic of necessity, actuality and apriority?
Peter Fritz. (2014). What is the correct logic of necessity, actuality and apriority? Review of Symbolic Logic. 7(3), pp. 385-414. https://doi.org/10.1017/S1755020314000136