Axiomatizability of propositionally quantified modal logics on relational frames

Journal article


Fritz, Peter. (2022). Axiomatizability of propositionally quantified modal logics on relational frames. The Journal of Symbolic Logic. pp. 1-36. https://doi.org/10.1017/jsl.2022.79
AuthorsFritz, Peter
Abstract

Propositional modal logic over relational frames is naturally extended with propositional quantifiers by letting them range over arbitrary sets of worlds of the relevant frame. This is also known as second-order propositional modal logic. The propositionally quantified modal logic of a class of relational frames is often not axiomatizable, although there are known exceptions, most notably the case of frames validating the strong modal logic S5 . Here, we develop new general methods with which many of the open questions in this area can be answered. We illustrate the usefulness of these methods by applying them to a range of examples, which provide a detailed picture of which normal modal logics define classes of relational frames whose propositionally quantified modal logic is axiomatizable. We also apply these methods to establish new results in the multimodal case.

Keywordspropositional quantifiers; modal logic; second-order propositional modal logic; axiomatizability; decidability; complexity
Year2022
JournalThe Journal of Symbolic Logic
Journal citationpp. 1-36
PublisherCambridge University Press
ISSN1943-5886
Digital Object Identifier (DOI)https://doi.org/10.1017/jsl.2022.79
Scopus EID2-s2.0-85143856629
Open accessPublished as ‘gold’ (paid) open access
Page range1-36
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online28 Nov 2022
Publication process dates
Deposited17 May 2023
Additional information

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Permalink -

https://acuresearchbank.acu.edu.au/item/8z07v/axiomatizability-of-propositionally-quantified-modal-logics-on-relational-frames

Download files


Publisher's version
  • 46
    total views
  • 39
    total downloads
  • 0
    views this month
  • 1
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Being somehow without (possibly) being something
Fritz, Peter. (2023). Being somehow without (possibly) being something. Mind. 132(526), pp. 348-371. https://doi.org/10.1093/mind/fzac052
Operands and instances
Fritz, Peter. (2023). Operands and instances. The Review of Symbolic Logic. 16(1), pp. 188-209. https://doi.org/10.1017/S175502032100040X
Ground and grain
Fritz, Peter. (2022). Ground and grain. Philosophy and Phenomenological Research. 105(2), pp. 299-330. https://doi.org/10.1111/phpr.12822
Closed structure
Fritz, Peter, Lederman, Harvey and Uzquiano, Gabriel. (2021). Closed structure. Journal of Philosophical Logic. 50, pp. 1249-1291. https://doi.org/10.1007/s10992-021-09598-5
On Stalnaker’s Simple Theory of Propositions
Fritz, Peter. (2021). On Stalnaker’s Simple Theory of Propositions. Journal of Philosophical Logic. 50, pp. 1-31. https://doi.org/10.1007/s10992-020-09557-6
On higher-order logical grounds
Fritz, Peter. (2020). On higher-order logical grounds. Analysis. 80(4), p. 656–666. https://doi.org/10.1093/analys/anz085
Propositional quantification in Bimodal S5
Fritz, Peter. (2020). Propositional quantification in Bimodal S5. Erkenntnis. 85, pp. 455 - 465. https://doi.org/10.1007/s10670-018-0035-3
Operator arguments revisited
Fritz, Peter, Hawthorne, John and Yli-Vakkuri, Juhani. (2019). Operator arguments revisited. Philosophical Studies. 176(11), pp. 2933 - 2959. https://doi.org/10.1007/s11098-018-1158-8
Higher-Order contingentism, Part 2: Patterns of indistinguishability
Fritz, Peter. (2018). Higher-Order contingentism, Part 2: Patterns of indistinguishability. Journal of Philosophical Logic. 47(3), pp. 407 - 418. https://doi.org/10.1007/s10992-017-9432-3
Can modalities save naive set theory?
Fritz, Peter, Lederman, Harvey, Liu, Tiankai and Scott, Dana. (2018). Can modalities save naive set theory? Review of Symbolic Logic. 11(1), pp. 21 - 47. https://doi.org/10.1017/S1755020317000168
Higher-Order contingentism, Part 3: Expressive limitations
Fritz, Peter. (2018). Higher-Order contingentism, Part 3: Expressive limitations. Journal of Philosophical Logic. 47(4), pp. 649 - 671. https://doi.org/10.1007/s10992-017-9443-0
Logics for propositional contingentism
Fritz, Peter. (2017). Logics for propositional contingentism. The Review of Symbolic Logic. 10(2), pp. 203 - 236. https://doi.org/10.1017/S1755020317000028
A purely recombinatorial puzzle
Fritz, Peter. (2017). A purely recombinatorial puzzle. Noûs. 51(3), pp. 547 - 564. https://doi.org/10.1111/nous.12172
Counting incompossibles
Fritz, Peter and Goodman, Jeremy. (2017). Counting incompossibles. Mind. 126(504), pp. 1063 - 1108. https://doi.org/10.1093/mind/fzw026
Counterfactuals and propositional contingentism
Fritz, Peter and Goodman, Jeremy. (2017). Counterfactuals and propositional contingentism. Review of Symbolic Logic. 10(3), pp. 509 - 529. https://doi.org/10.1017/S1755020317000144
Propositional contingentism
Fritz, Peter. (2016). Propositional contingentism. Review of Symbolic Logic. 9(1), pp. 123 - 142. https://doi.org/10.1017/S1755020315000325
Higher-Order contingentism, Part 1: Closure and generation
Fritz, Peter and Goodman, Jeremy. (2016). Higher-Order contingentism, Part 1: Closure and generation. Journal of Philosophical Logic. 45(6), pp. 645 - 695. https://doi.org/10.1007/s10992-015-9388-0
First-order modal logic in the necessary framework of objects
Fritz, Peter. (2016). First-order modal logic in the necessary framework of objects. Canadian Journal of Philosophy. 46(4-5), pp. 584 - 609. https://doi.org/10.1080/00455091.2015.1132976
What is the correct logic of necessity, actuality and apriority?
Peter Fritz. (2014). What is the correct logic of necessity, actuality and apriority? Review of Symbolic Logic. 7(3), pp. 385-414. https://doi.org/10.1017/S1755020314000136