Identification of MicroRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle
Journal article
Zacharewicz, Evelyn, Della Gatta, P. A., Reynolds, John, Garnham, Andrew, Crowley, Tamsyn, Russell, Andrew and Lamon, Séverine. (2014). Identification of MicroRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle. PLoS ONE. 9(12), pp. 1 - 25. https://doi.org/10.1371/journal.pone.0114009
Authors | Zacharewicz, Evelyn, Della Gatta, P. A., Reynolds, John, Garnham, Andrew, Crowley, Tamsyn, Russell, Andrew and Lamon, Séverine |
---|---|
Abstract | Background: Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs) are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling. Results: Ten young (24.2±0.9 years) and 10 old (66.6±1.1 years) males completed an acute resistance exercise bout known to maximise muscle protein synthesis, with muscle biopsies collected before and 2 hours after exercise. We screened the expression of 754 miRNAs in the muscle biopsies and found 26 miRNAs to be regulated with age, exercise or a combination of both factors. Nine of these miRNAs are highly predicted to regulate targets within the Akt-mTOR signalling pathway and 5 miRNAs have validated binding sites within the 3′ UTRs of several members of the Akt-mTOR signalling pathway. The miR-99/100 family of miRNAs notably emerged as potentially important regulators of skeletal muscle mass in young and old subjects. Conclusion: This study has identified several miRNAs that were regulated with age or with a single bout of resistance exercise. Some of these miRNAs were predicted to influence Akt-mTOR signalling, and therefore potentially skeletal muscle mass. These miRNAs should be considered as candidate targets for in vivo modulation. |
Year | 2014 |
Journal | PLoS ONE |
Journal citation | 9 (12), pp. 1 - 25 |
Publisher | Public Library of Science |
ISSN | 1932-6203 |
Digital Object Identifier (DOI) | https://doi.org/10.1371/journal.pone.0114009 |
Scopus EID | 2-s2.0-84914696631 |
Open access | Open access |
Page range | 1 - 25 |
Publisher's version | |
Additional information | © 2014 Zacharewicz et al. This is an open-access article distributed under the terms of the [http://creativecommons.org/licenses/by/4.0/] Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
Place of publication | United States |
https://acuresearchbank.acu.edu.au/item/87w11/identification-of-micrornas-linked-to-regulators-of-muscle-protein-synthesis-and-regeneration-in-young-and-old-skeletal-muscle
Download files
142
total views101
total downloads5
views this month3
downloads this month