Evaluating model fit with ordered categorical data within a measurement invariance framework : A comparison of estimators
Journal article
Sass, Daniel, Schmitt, Thomas and Marsh, Herbert W.. (2014). Evaluating model fit with ordered categorical data within a measurement invariance framework : A comparison of estimators. Structural Equation Modeling: A Multidisciplinary Journal. 21(2), pp. 167 - 180. https://doi.org/10.1080/10705511.2014.882658
Authors | Sass, Daniel, Schmitt, Thomas and Marsh, Herbert W. |
---|---|
Abstract | A paucity of research has compared estimation methods within a measurement invariance (MI) framework and determined if research conclusions using normal-theory maximum likelihood (ML) generalizes to the robust ML (MLR) and weighted least squares means and variance adjusted (WLSMV) estimators. Using ordered categorical data, this simulation study aimed to address these queries by investigating 342 conditions. When testing for metric and scalar invariance, Δχ2 results revealed that Type I error rates varied across estimators (ML, MLR, and WLSMV) with symmetric and asymmetric data. The Δχ2 power varied substantially based on the estimator selected, type of noninvariant indicator, number of noninvariant indicators, and sample size. Although some the changes in approximate fit indexes (ΔAFI) are relatively sample size independent, researchers who use the ΔAFI with WLSMV should use caution, as these statistics do not perform well with misspecified models. As a supplemental analysis, our results evaluate and suggest cutoff values based on previous research. |
Year | 2014 |
Journal | Structural Equation Modeling: A Multidisciplinary Journal |
Journal citation | 21 (2), pp. 167 - 180 |
ISSN | 1070-5511 |
Digital Object Identifier (DOI) | https://doi.org/10.1080/10705511.2014.882658 |
Scopus EID | 2-s2.0-84898070525 |
Page range | 167 - 180 |
Research Group | Institute for Positive Psychology and Education |
https://acuresearchbank.acu.edu.au/item/8qvy6/evaluating-model-fit-with-ordered-categorical-data-within-a-measurement-invariance-framework-a-comparison-of-estimators
354
total views0
total downloads1
views this month0
downloads this month